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ABSTRACT 

Loman, J., 1984. Comparing two models of alloregulated predators. Ecol. Modelling, 24: 
293-303. 

Two models for the dynamics of predator populations without self-regulation are com- 
pared. In both models the relationship between resource density and feeding rate is of the 
Holling II-type, i.e. increasing towards an asymptotic value. The models differ with respect to 
the relationship between feeding rate and per capita rate of increase. In one of the models this 
relation is linear and in the other it is increasing at a diminishing rate. The properties of the 
two models are discussed and it is suggested that the second is more realistic. Furthermore, 
the second makes use of fewer parameters. 

INTRODUCTION 

Use of  models 

Mathemat ica l  models  can be useful tool in the search for general  rules and  
pa t te rns  governing  the dynamics  of  natura l  popula t ions .  The  conclus ions  

reached f rom the analysis of  such models  are true provided  that  the assump-  

tions u p o n  which they are based are correct.  However ,  the assumpt ions  are 

a lmost  cer tainly not  correct  and it is difficult to tell to what  extent  the 

discrepancies  are impor tan t .  This p rob lem may  be c i rcumvented  in two 

ways. The assumpt ions  of  models  may  either be fo rmula ted  in such general  

terms that  any  conclus ions  d rawn  may  have some impor t ance  for our  
unde r s t and ing  of  the real world or we m a y  test the models  by  c o m p a r i n g  
predic t ions  f rom them against  pa t te rns  observed in the real world.  While the 

models  can not  be proven,  evidence can in this way  be p rov ided  that  
suppor t s  them. The  utility of  models  in this context  is no t  based on the 

accuracy  of  the predic t ions  they make  but  on the fact that  mechan i sms  
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causing a pattern are much more simply observed and studied in a model 
than in the real world. These considerations focus on the importance of 
building models upon realistic assumptions and on the utility of models with 
easily interpretable mechanisms. 

Objectives 

Models of population dynamics in animal communities often consist of 
sets of differential equations, where each equation describes the rate of 
change in one population as a function of other conditions within the 
community.  These conditions usually comprise the densities of other popula- 
t ions in the community.  If the per capita rate of increase (PCRI) of one 
population depends upon (among other things) the density of the population 
itself, then the population is said to be autoregulated or to have intraspecific 
population regulation. For populations which are not autoregulated the term 
alloregulated is proposed. In this paper I examine two differential equations 
for the dynamics of alloregulated predator  populations. The equations can 
be, and have been formulated in several ways by previous authors. In the 
present paper they are written so as to facilitate comparisons. These com- 
parisons focus on: (a) the biological interpretability of the parameters used; 
and (b) the extent to which these two models are likely to be realistic. 

THE MODELS 

Model I has been proposed by Hsu et al. (1978), and a similar model is 
given by Roughgarden (1979, p. 443). It is given by: 

d P / d t =  P A +  V d (1) 

This is the predator  component  of the Volterra (1926) model for a predator- 
prey system, extended to account for a non-linear relationship between prey 
density and birth rate. The first term in the parenthesis is the birth rate of 
the predators. This term is zero at a prey density of zero and increases 
asymptotically towards a maximum (bm~,) as prey density increases to 
infinity. 

Model II, formulated by Tanner (1975) is given by: 

d P / d t  = rP 2 F -  Fmi n (2) 

The feeding rate ( F )  in this model is depending on prey density according to 
the Holling (1965) II-type of functional response (Fig. 1): 

F,,l~x V 
F = (3) 

B + V  
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To facilitate comparisons, model I is here reormulated as follows. I assume 
that a functional response of the Holling II-type (eq. (3)) applies in this 
model too and that there is a linear relation between birth rate and feeding 
rate: 

b = Fk (4) 

This model is the same as eq. (1) because combining eqs. (3) and (4) with the 
tautological relation: 

d P / d t  = P ( b -  d) 

gives: 

FmaxVk 
d P / d t =  P( F k -  d ) =  P B +  V 

(5) 

d)  (6) 

F 

B V 

Fig. 1. Relationship between prey density (V) and feeding rate ( F )  of the Holling II-type. 

TABLE I 

Symbols 

A 
B 
B 

BMAX 
D 
DB 
D~ 
F 
K 
A 

FMAX 
FMIN 

P 
R =  
V 

= Prey density at which a predator  realizes half its maximum birth rate 
= Prey density at which a predator  feeds at half its maximum rate 

= Birth rate 
= Birth rate when resources are unlimited 
= Death rate 

= Basal death rate 
= Starvation death rate 
= Feeding rate (prey units per predator  individual) 
= Constant ,  relating feeding rate to birth rate 
= Prey density at which the predator  population is in equilibrium 
= Maximum feeding rate 
= Minimum feeding rate, i.e., the feeding rate at which a populat ion goes extinct 

immediately 
= Predator density 
= Maximum per capita rate of increase 
= Prey (victim) density 
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This  is ident ical  to eq. (1) as k = bm~x/Fm~ (eq. (4) if we assume that  B = .4. 
The  relat ion be tween feeding rate  ( F )  and  PCRI  ((dP/dt)/P) is shown in 
Fig. 2. 

Mode l  II assumes that  the m a x i m u m  rate of  ra te  of  increase ( r )  is reached  
for  some finite value of  the feeding rate (Fm~)  as does model  I. P C R I  is 
assumed to increase at a d iminishing rate  with increasing feeding rate  and  
for  small values of  feeding ra te  ( approach ing  Fmi.) P CRI  is inf ini tely small 

(dPId't)/P 
P 

bma x < 

0 

d 

y 
J F 

Fig. 2. Relationship between feeding rate ( F )  and per capita rate of increase according to 
model  I. Abbreviations are explained in Table I. 

(dPIdt)/P 

t 
I 
I 
I 
I 

t 

0 Fm'~o l F 
Qx 

Fig. 3. Relationship between feeding rate ( F )  and per capita rate of increase according to 
model  II. Abbreviations are explained in Table I. 



297 

(large negative value), thus the population becomes extinct immediately. The 
rate of increase is not defined for feeding rate values below fmin (Fig. 3). In 
model I (eq. (1)) rate of increase is defined for all positive values of the 
feeding rate and for comparative purposes I assume fmin of model II (eq. (2)) 
to be zero. Furthermore,  I believe this to be a realistic value for this kind of 
model. It is probably possible to obtain still more realism by assuming that 
there is a minimum value for PCRI, comparable to the death rate of eq. (1). 
This should be realistic because, however low the feeding rate, no population 
can decrease in less time than it takes for the individuals to starve to death, a 
finite time. In the version of model II that is obtained by these modifica- 
tions, PCRI is defined by eq. (2) for all values of the feeding rate above that 
which produces a PCRI equal to the assumed minimum value. Below this 
value, PCRI is constant at the minimum value (Fig. 4). 

D I S C U S S I O N  

Parameters and predator efficiency 

Representing the predator population in an isocline diagram (Rosenzweig 
and MacArthur,  1963) yields a straight vertical line (Fig. 5) for both models. 

(dP/dt)/P 

p -  

0 
F 

Fig. 4. Relationship between feeding rate and per capita rate of increase according to the 
adjusted model II. 
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Above a certain prey density, the predator population increases and below 
that density it decreases. The 'break-even' density of the prey or resource 
level has been symbolised with X by Hsu et al. (1978). In model II, X is 
simply given by: 

X = B (7) 

while in model I it is given by: 

The h-value has important interpretations. A predator with a low h-value 
can be considered an 'efficient' predator as it is able to maintain a stable 
population despite a low resource density. Hsu et al. (1978) compared such 
predators to K-selected ones on the r K scale. The B-value of eqs. (3) and 
(7) is the prey density at which the predator reaches half its maximum 
feeding rate and this is obviously also related to predator 'efficiency'. When 
interpreting the results of a theoretical analysis, equalling the B-value with 
the h-value is likely to be an advantage since this reduces the number of 
variables. Many variables, as can be incorporated into model I, is desirable 
only when it is necessary to separate the effects of different components that 
may contribute to efficiency. 

d- Value of model I 

In most populations, bma x and r should be rather similar since death rate 
is much less than birth rate under favourable conditions. The bm~ X- and the 
r-value may thus replace each other if one wishes to simulate a system with 
parameter values from real populations. However, it will most likely be 
difficult to make estimates of the d-value. The d-value is a parameter and 
represents thus a death rate that is constant and is independent of resource 
level, a situation which is very difficult to imagine for most predator 

A 

Fig. 5. Predator  isocline. 
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populations. The concept could be 'saved' by assuming d to be the death 
rate when no resources are available (it would thus be a rather high value) 
and by defining b as a composite 'bir th rate', including both the reduction in 
death rate at increasing resource levels and the actual birth rate. However, as 
will be demonstrated in the next section, such a d-value results in unrealistic 
properties of the model. A modification of the model is suggested in the 
section on further considerations. 

Shape of the feeding rate versus PCRI graph 

Interpreting d as the death rate in a population that is devoid of resources 
leads to rather high values. If the population half-life is 10 days, then d 
computed on a yearly basis is 12.8; if the half-life is 40 days, then d is 3.2. 
Of course, an exponential decrease is probably not the best model represent- 
ing extinction from starvation. Rather, the majority of individuals would 
probably die a certain number of days after the disappearance of food 
resources. However, the model may not be too unrealistic since individuals 
have different resistance towards starvation. Estimates of r range from about 
0.2 for large ungulates (Tanner, 1975) to about 4.5 for voles (Leslie and 
Ranson, 1940). For such values of d and r, model I requires that the 
predator is feeding close to its maximum rate if the population is to be in 
equilibrium (Fig. 6). Such a requirement seems unrealistic. It also seems 
unrealistic to assume a linear relation between feeding rate and PCRI at high 

3 . 2  

^ i 

O ×  

0 .4 - J  

Fig. 6. Relat ionship between feeding rate and  per  capi ta  rate of increase with approximate ly  
realistic values of dea th  rate and  max imum bi r th  rate for a mamal.  
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feeding rates. Rather, one would expect the ' law of diminishing returns' to 
apply in this case, as it does in model II (Fig. 4). This is especially true as, 
for use in the analysis of community dynamics, F (feeding rate) should 
represent kill rate and include surplus killing, cached food etc. Model II 
assumes that the population is in equilibrium at a food intake that is exactly 
half way between the minimum feeding rate (or zero in my simplification) 
and the maximum feeding rate. This is an inflexible assumption, but proba- 
bly not too unrealistic. Field data on feral cats (Liberg, 1981, p. 44) support 
this. Daily food intake was 496 g during a period of food super-abundance 
while the 'daily food requirement' is 245 g. Furthermore, the maximum 
feeding rate of a predator is not very well defined, at least less so than the 
feeding rate at equilibrium. For applications of model II, I suggest that the 
former rate can be set at twice the latter. The behaviour of model II at low 
feeding rates is unrealistic unless use is made of the limitation suggested 
above (Fig. 4). The limitation may complicate mathematical analysis of the 
model as different relations are used in different intervals. If the model is 
computer simulated there is no problem, on the contrary, avoiding large 
negative numbers facilitates the use of the model. 

Further considerations of model I and an extension 

I have so far considered d (death rate in the absence of feeding) to have 
the nature of an parameter and have included in b all improvements in 
PCRI due to an increased feeding rate. The term birth rate is not ideal for 
this variable as it covers not only births in the literal sense. If b should 
represents births only, d too must be considered a variable. As an extension 
of model I, I suggest that d may be partitioned into two components. One is 
the basal death r a t e  (db) , a parameter that represents all deaths that are 
independant  of the feeding rate. The other part is variable and depends on 
the parameter d S (starvation death rate, i.e., deaths due to starvation at zero 
feeding rate) and the feeding rate (F) .  If it is furthermore assumed that there 
is a limiting feeding rate (Flirn) above which deaths due to starvation are 
negligible, then the following model III may be proposed: 

d P / d t  = e ( b -  d) 

d = d b ,  F > Flim (9)  

dsF 
d = d b + d S Flim, F < Fli m 

The relationship between feeding rate and PCRI is shown in Fig. 7 and is 
very simular to that shown by model II (Fig. 4). 

Hsu et al. (1978, p. 341) in their use of model I obviously avoided the 
unrealistic situation represented in Fig. 6 by considering death rate to be a 
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parameter  with the value 0.35 or 0.69 (corresponding to a yearly survival of 
0.71 and 0.50, respectively). These values may realistically represent basal 
death rate for a vertebrate but  do not account for starvation. In a pure 
one-prey model, this is clearly inaccurate but  as a model of a field situation 
it may be a good compromise between realism and simplicity. Deaths 
primarily due to starvation appear to be rather uncommon among predators. 
At very low prey densities, predators may survive on alternative prey species 
or (birds of prey) migrate temporarily. While alternative prey species may 
not be common enough to permit reproduction of the predators they may 
prevent starvation. The dynamics of a predator population may under such 
circumstances be accurately described by the following version of model I: 

d P / d t  = P ( b  - db) (10) 

b = F k  

where d b is a parameter. The relationship between the feeding rate on the 
main  prey  species and PCRI  is given in Fig. 8. The fact that a predator  
population's  PCR!  does not decrease drastically at low feeding rates is due 
to this supplementary feeding on alternative prey species. However,  this need 
not be stated explicitly in the model unless the dynamics of the alternative 
prey species is under consideration too. 

(dP/dt) P 

bmax 
d b • 

I 

Fma x F 

Fig. 7. Rela t ionship  be tween feeding rate and  per  capi ta  rate of increase according to model  
III. 
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(dP/dl) / P 

p -  

bmax { d b- 

J 
Fm~× F 

Fig. 8. Relationship between feeding rate on main prey (when alternative prey are available) 
and per capita rate of increase. 

CONCLUSIONS 

The previous discussion should demonstrate that under most circum- 
stances model II is considered to be superior to model I, wi th  regard to the 
biological interpretability of both its parameters and its structure. However,  
models such as these are tools whose utility is demonstrated only through 
their results. It is therefore premature to state here which model should be of 
most use in all cases. A good model produces conclusions that subsequently 
are corroborated by field data. If the mechanisms of a model permits 
biological interpretations, then the model can also be used to interpret 
observed field phenomena. While either of the discussed models may fulfil 
these criteria, an awareness of their differences is important  when selecting a 
model for applications. 
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