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ABSTRACT

Loman, J., 1988. Alternative prey that decreases vole population cyclicity: a simulation study
based on field data. Ecol. Modelling, 40: 265-310.

A model of a one predator—two prey system is presented. Different versions of the model
are simulated using parameter values based on field data from a study of a vertebrate
community in southern Sweden. Some versions and sets of parameter values produce a cyclic
system when only one prey (based on vole-like parameter values) is included but a rather
constant (‘stable’) system when both prey types are included. This supports the hypothesis
that an alternative prey species may make the difference between cyclic and ‘stable’ vole
populations. The hypotheses that predator territoriality and switching is important for this
effect of alternative prey are supported. The results do not support the premise that the
possible existence of prey refugia or of a seasonally varying prey carrying capacity and prey
vulnerability are important factors for this alternative prey effect.

INTRODUCTION
Hypothesis

Vole populations in northern and central Sweden cycle on a spatially
large scale with population peaks every 3 or 4 years. Populations in southern
Sweden fluctuate considerably less and large-scale cycles have not been
detected (Myllymiki et al., 1977). Such a non-cyclic field vole Microtus
agrestis population is found in the Revinge area in southern Sweden
(55°40'N, 13°30’E). Indigenous populations of voles, vole predators and
alternative prey species have been the subject of studies for several years
(Erlinge et al., 1982, 1983, 1984). As a result of these studies it has been
hypothesized that the absence of severe fluctuations in the vole population is
due to the presence of alternative prey, mainly rabbits, for the voles’
predators. Quantitatively the most important vole predators at this locality
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are foxes, cats, and buzzards. It is argued that these alternative prey support
dense predator populations that, without time lag, increase their consump-
tion of voles when these increase in numbers. The hypothesis can be
extended and specified further by assuming that the dampening effect on the
vole population is made possible, or at least supported, by the presence of
additional characteristics of the system:

(1) Switching, i.e. disproportionate predation rate on abundant prey.

(2) Seasonal fluctuations. Of particular importance could be seasonal
fluctuations in carrying capacities that allow the alternative prey to increase
in spring before the vole population does so. This should contribute to a
small, or absence of a, time lag in the predators’ response to increasing vole
population densities.

(3) Predator intraspecific population regulation. This could take the form
of territoriality that could prevent the building up of very high predator
populations with ensuing vole and predator crashes — cyclicity.

(4) Refugia. It could be that habitat heterogeneity, an extreme form of
which is prey refugia, is critical for the levelling of population cycles. This
seems to be a hypothesis that deserves to be tested as it can be argued that
the south Swedish habitat, with a mixture of arable land and forest, is more
heterogeneous than the north Swedish habitat which is predominately taiga.
Although not obvious it could be that some habitats in south Sweden give
particular good protection from predation.

Testing the hypothesis

The hypothesis and the extensions can be tested in several ways. In a
descriptive study one examines several predator-prey communities that
differ in ways critical to the predictions of the hypothesis. Basic is of course
the comparison of communities with and without alternative prey. There
may, however, be difficulties finding communities that only differ with
respect to the factors one wishes to test. In an experimental study one
manipulates a community. One can eliminate an alternative prey from a
community and observe the changes in dynamics. For meaningful results it
may be required that such manipulations be rather extensive. The present
work constitutes another kind of test of the hypothesis. I formulate a set of
alternative simulation models of a predator-prey community and examine
their properties when simulated with one and two prey species. This ap-
proach alone does not give a full understanding of the system, but neither do
the other approaches. The importance of factors that are not included in the
model is not evaluated, thus it is not possible to prove that a particular
factor is necessary and without alternatives for a particular behaviour of the
system. However, this approach does do two things:
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(1) One can conclude that the system can behave in a particular way if a
certain factor is operating. This is one kind of support we should request for
a hypothesis — if no one is able to model a system that behaves realistically
when a particular factor is included, this clearly weakens the support for the
hypothesis.

(2) If a system behaves realistically without the inclusion of a factor this
disproves the validity of a hypothesis that states that this factor is important.
‘Behaves realistically’ does not mean precise numeric correspondence, only a
qualitatively correct behaviour of the model. However, a good fit increases
the confidence one can have in the model and its predictions.

These two points constitute the rationale for this study.

Simulation models have been used to study hypotheses concerning
vertebrate communities (e.g., Powell, 1980; Rabinowich et al., 1985). A
much-abridged version of the present study is included in the paper by
Erlinge et al. (1984).

Principles used when constructing the models

The purpose of the study is to validate the following principles that have
been followed when constructing the models:

(1) The models are constructed in a way that makes them predict cyclic
vole populations when predators but no alternative prey are present. How-
ever, the study is nor concerned with the origin of vole cycles. Therefore two
alternative vole models are constructed. One assumes that vole cycles are
generated within the vole population or by an interaction between the vole
population and its food. This model predicts cyclicity in the single-species
case too. The other model assumes that vole cycles are produced by an
interaction between voles and their predators. In this model the vole
population is constant in the absence of predators.

(2) The model is specifically made to test the hypothesis as applied to the
Revinge system. Parameter values and assumed functions are usually based
on and verified with data from the Revinge area.

(3) I make estimates of functions and parameter values, sometimes based
on information from other studies, if no data from the Revinge area is
available. A test of these estimates is available in the sense that predictions
of the model in the three-species case can be compared to the real dynamics
of the studied populations in the Revinge area.

(4) In some cases I do not think that verification of a parameter value or
function is necessary. This is the case when a function represents a mecha-
nism that cannot be accurately measured but is still desirable to test. For
example, I represent ‘seasonally fluctuating carrying capacity’ with a sine
function despite the fact that I have no measurements of carrying capacity
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that support precisely this function. However, possible qualitative effects
from a naturally fluctuating carrying capacity ought to be similar to those
fluctuating according to a sine function.

The rationale of the study does not require that the parameter values are
numerically correct. If the model behaves as the hypothesis predicts (without
taking resort to absurd parameter values) this supports the hypothesis.

MODELS

I construct the models as combinations of four submodels: the vole
model, the alternative prey model, the predator model, and the predation
process model (Fig. 1). This simplifies the presentation of the models and
the execution of the simulations. Each submodel takes any of several
versions and may be extended with options. Some of these options apply to
all versions, whilst others apply to some of them only. I use several versions
to find those that are realistic in the three-species case and are thus valid for
the Revinge area. The options represent factors the importance of which I
want to test.

No explanations of symbols are given in the text in order to save space.
The reader is throughout referred to Table 1.

Mathematical description of the models

Vole model
(1) Version I — without time-lag. 1 assume that vole population growth
depends on the density of the vole population itself (according to the

Vole population Predator popula-
dynamics tion dynamics

F
P Fy
Altemative prey Fa | Feeding process

population dy-
namics

Fig. 1. Four submodels and the relations between their inputs and outputs. 4, P and V,
number of alternative prey, voles, and predators, respectively; F, predator feeding rate; F,
and F,, feeding rate on alternative prey and voles, respectively.
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TABLE 1

List of symbols used

State variables

A Alternative prey population (biomass per area)

p Predator population (individuals per area)

V Vole population (biomass per area)

Parameters

A A given density of the alternative prey (biomass per area)

A4 Mean density of the alternative prey

a A parameter in the prey switch function

Aamp Measure of the magnitude of seasonal fluctuations in the density of the alternative
prey

bnax  Birth rate of the predator when this is feeding at maximum rate (offspring per

individual and year)
dy, Basal death rate of the predator. Mortality (fraction dying per year) that is not
affected by feeding rate

d, Starvation mortality. Further mortality when no food is available

F,;  Feeding rate below which extra mortality (in addition to d,) takes place

F,.. Feeding rate of a predator that is not limited by prey density (biomass per time)
Fr A parameter in the equation for functional response

Frr A parameter in the equation for functional response with prey refugia

Fr Mean value of a seasonally fluctuating functional response

Fr,n, Measure of the magnitude of seasonal fluctuations in functional response

Fas, Phase of the equation for the density of a given alternative prey

Fas;, Phase of the equation for functional response

Fasg Phase of the equation for a seasonally fluctuating carrying capacity

Fas,,; Phase of the equation for a seasonally fluctuating prey vulnerability

H_.. The proportion of time that a predator spends hunting when success is low

K Carrying capacity for a prey population

K Mean value of a seasonally fluctuating prey carrying capacity

K Measure of the magnitude of yearly fluctuations in prey carrying capacity

Ki A measure of the strength of predator intraspecific population regulation

P A given density of the predator population

rmax ~ Maximum prey population growth rate

Ref  Size of prey refugia (density of unavailable prey)

Swha A parameter in the equation for habitat switch

Swhb Another parameter in the equation for habitat switch

Swpa A parameter in the equation for prey switching

Swpb Another parameter in the equation for prey switching

T Time-lag in the voles’ response to changes in carrying capacity

Month of predator reproduction

Vul  Prey vulnerability. Proportion of prey biomass that is killed and consumed per time
and area unit by a predator individual

Vul  Mean value of a seasonally fluctuating prey vulnerability

Vul,,,, Measure of the magnitude of seasonal fluctuations in prey vulnerability

To be continued
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TABLE 1 (continued)

Variables

b Current predator birth rate

d Current predator death rate

F Predator feeding rate (biomass per predator individual and time unit)
Fh Netto feeding rate (biomass per predator individual and time unit)
Fr Current value of a seasonally fluctuating functional response

H Current predator hunting effort (proportion of time used for hunting)
K Current value of a seasonally fluctuating prey carrying capacity

Pr Biomass of voles as a proportion of all prey present

Vul  Current value of a seasonally fluctuating prey vulnerability

relation given by the logistic model) and on the decrease caused by preda-
tion:
dV/dI = Vrmax(v)(1 - V/Kv) - PFv (1)

(2) Version II — with time-lag. In this version I assume that the density-
dependent regulation of the vole population takes place with a time-lag. This
lag could be related to the time taken by food plants to recover after grazing
(May, 1973) or, if voles are subject to cyclic selection with respect to density
sensitivity (Krebs et al, 1973), to generation time. Whichever the back-
ground, an equation with time-lag can cause cycles that are generated within
the submodel. This means in the present context a vole population that
cycles even if it is not subject to predation. Such a population is modelled by
the following equation:

dV/dt = I/'rmax(v)(1 - I/(t—T)/I<v) - PE' (2)

(3) Option — seasonal fluctuation in carrying capacity. 1 assume that vole
carrying capacities fluctuate over the year according to a sine function:

K, =K, + K,y K, sin(T2n — Fasg,,)) (3)
Alternative prey model
(1) Version I — model based on the logistic equation. This submodel
corresponds to the one used for the vole population:

dA/dl = AFypye(1 — A/K,) — PF, (4)

The vole population with a time-lag was formulated to be able to study an
intrinsically regulated vole population. The hypothesis to be tested does not
make any particular assumptions concerning the regulation of the alterna-
tive prey and it has not been suggested that rabbit populations cycle on their
own. Therefore no model based on time-lag is studied for the alternative

prey.
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(2) Version II — model with constant alternative prey. The proportion of
produced rabbits that were taken by predators was rather small in the years
when rabbits were common in the Revinge area (Erlinge et al., 1983). This
suggests that the model for the alternative prey could be simplified by
making the dynamics of this prey independent of predation. Such a model is
obtained by letting the size of this population take a value that is fixed and
thus has the character of a parameter. This value can be varied to study the
effects of different levels of alternative prey density.

(3) Option — seasonal variation in carrying capacity. As for the vole
model, this condition is modelled by a sine function:
K,=K,+ Kamp(é)l?a sin(7T2m — Fasg,) (5)

A corresponding option for version II is obtained by letting the given
population size follow a sine function:

A=A+ A, A sin(T2m — Fas,) (6)

Predator model

(1) Version I — model without starvation mortality (diffuse alternative prey).
This model rests on the assumption that mortality does not vary seasonally
and is independent of feeding rate while reproduction takes place once per
year and is proportional to the feeding rate. This model is used by Hsu et al.
(1978) and discussed by Loman (1984). For average and high feeding rates it
seems reasonable but hardly so when feeding rate is low. Under such
circumstances it is likely that further mortality that is directly or indirectly
due to starvation takes place. This condition is modelled below (version II).
However, version 1 seems potentially realistic if it is assumed that the
predators have access to prey types that are not explicitly modelled. Such
prey could provide food and prevent starvation even when densities of voles
and the explicitly modelled alternative prey are low. As we are not interested
in the dynamics of these further prey types there is no need to model them
explicitly and their effect on the system is accounted for through this
predator model. The seasonal nature of predator reproduction must be
modelled in order to test the second auxiliary hypothesis (seasonality). 1
therefore use a discrete predator model. I assume that all reproduction takes
place in one specified month of the year. Yearly mortality is divided in
twelve equal fractions, one for each month. The model is given by the
following equations:

Puiin=P(—dy) if mod(r12,12) = ¢,, (7)
Puiiin=P(Q—d,) 1 +b)  ifmod(s12,12) =1, (8)

1/12
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dp+ds 1

dp A

Ferit Fmax F

Fig. 2. Relation between feeding rate and death rate in the predator model with starvation
mortality. d, predator death rate; d,, and d,, basal and starvation death rate; F, predator
feeding rate; F.;, and F_,,, critical and maximum feeding rate.

Birth rate, number of offspring per adult animal, is proportional to feeding
rate:

b=——>b,., (9)

(2) Version II — model with starvation mortality. It is assumed that further
mortality (starvation mortality) is added to the basal mortality when feeding
rate decreases below some critical value. This mortality increases with
decreasing feeding rate (Fig. 2). The equations for this version are similar to
those for the previous one with one exception: the parameter d,, is replaced
by the variable d, the value of which is given by the following equations:

d=d, if F> F,, (10)
d,F
F,

crit

d=dy+d,— if F<F, (11)
This modification of version I was suggested by Loman (1984).

(3) Version III — model with constant predator population. This model
mimics the characteristics of a population of domestic cats. The density of
this predator is fixed by factors external to the system. The feeding rate of
this population is represented by its consumption of prey in the system;
voles and alternative prey. The amount of food external to the system that is
used (e.g. canned cat food) does not concern us and is not modelled. There
is no influence from the modelled feeding rate on the density of this
predator. This model is obtained by simply letting predator density take the
character of a parameter.

(4) Option—intraspecific population regulation. It is reasonable to assume
that the growth of a predator population is not only affected by the
individuals’ feeding rates but also by the population’s current density. In a
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dense population one expects a larger proportion of energy intake to be used
for social interactions than in a more sparse one. An example of a mecha-
nism with this effect is territoriality. This phenomenon can be modelled by
modifying the equations that describe birth rate (equation 9) (Loman, 1985).
With this option, birth rate is affected both by feeding rate and by
population density:

F ' 1 P
b=fn;(bm“_(bm“+l_-l——g)ﬁ) (12)

If P =0, this equation is identical to equation (9) and population growth is
only affected by feeding rate. If P = Ki, the equation can be written as
b= (F/Fu,)(1/(1—d)—1) and thus P,,,, =P, etc. This means that the
population is constant if and only if F=F_,,. The population decreases if
feeding rate is less. The population will settle at an equilibrium if feeding
rate is constant. This equilibrium can be computed from the fact that
(14 b)(1 —d) =1 at equilibrium and equation (12). It is (after rearranging):
F
d—b.,(1—-4d) 7

Fmax max

F d—bmax(l_d)

(13)

Predation process model

(1) Version I — hunting in one habitat. Hunting is assumed to take place
in one habitat where both prey types are randomly mixed. The model is
based on the idea that each prey species has a certain vulnerability with
respect to the predator. This is the probability that a predator individual
succeeds in capturing one prey individual during one time unit. This is
equivalent to the proportion of all prey specimens (or all prey biomass) that
is captured in one time unit by a given predator individual. I assume that the
predator exhibits a functional response to increasing prey densities that
conforms to Hollings’ type II, i.e. feeding rate increases asymptotically
towards a maximum value as prey density increases (Holling, 1965). In
version I, I produce this mechanism by assuming that the proportion of time
that is used for hunting decreases with increasing hunting success (prey
captured per time actually hunting). The model is given by the following
equations:

F=Fh H (14)
E
H=—"%— (15)

max
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Hmax 7

Hmax _

F max

Fmax

f
Fmax V
Hmax Vul

Fig. 3. (A) Relation between netto feeding rate (Fh) and the proportion of all time that is
used for hunting (H') (equation 15).

(B) The relation between vole density and feeding rate that is defined by the equations
(14)—(16). After rearrangeing, this relation is given by (32) which is shown on the graph. H
and H, hunting effort and maximum hunting effort (both measured as hunting hours per

max?>

24 h); F, Fh and F_,,, predator feeding rate (prey per h), netto feeding rate (prey per h
actually feeding) and maximum feeding rate; Vul; prey vulnerability (proportion of prey in
one unit area taken by one predator individual and time unit).

The second equation states that when hunting success is low (Fh small) so is
H close to H,,,,, 1.e. the predator uses the maximum possible proportion of
its time for hunting. Note that H ., is not 1 but a value less than 1 that is
characteristic of the predator, 1 — H_,, represents the time that necessarily
must be used for resting, body care, etc. Equation (15) also states that when
hunting success (Fh) is high so is HF,,, /Fh (as F,,,/H.,,, in the denomina-
tor of equation (15) can be neglected compared to Fh) and thus (from
equation 14) F = F,,, (Fig. 3).

Hunting success is directly proportional to the density and vulnerability
of the prey:
Fh=V Vul,+ 4 Vul, (16)

(2) Option 1 — seasonal fluctuation in prey vulnerability. Vulnerability is
considered a variable that follows a sine function:

Vul, = Vul, + Vul,Vul ., sin(727 — Fasq, ) (17)
Vul, = Vul, + Vul,Vul ) sin(T27 — Fas ) (18)
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(3) Option 2 — prey switching. Switching does in this context mean that
the vulnerability of the two prey species depend on their relative abundance.
The model is given by the following equations:

Vul,=a,(1+e¢) (19)
Vul,=a,(1—e¢) (20)
1 — Swpb V4
e = Swpb Swpb (21)
1 — Swpb V4 A
Swpb

The parameters and variables in these equations have no clear interpreta-
tions. A given combination of Swpa, Swpb, and the ratio a,/a, does,
however, give a characteristic switching graph that, by trial and error, can be
fitted to field data points in aplot of relative prey densities in nature to
relative prey number in predator food. Roughly speaking, the ratio a,/a,
represents the convexity of the switching graph, Swpa represents the degree
of switching, and Swpb represents the inflection point, i.e. the prey ratio at
which the predator turns from preference for one prey to the other (Fig. 4).

(4) Version II — hunting in two habitats. It is assumed that the two prey
species, voles and alternative prey, live in separate habitats and that the
predator spends part of its hunting time in either habitat. Total hunting time
is assumed to be fixed and the functional response is modelled by assuming
that the hunting success, and thus feeding rate, depends on prey abundance
in each habitat:

Vv
Ho=vr (22)
A
Ho=v4 (23)
H=H,+H, (24)

Feeding rate depends on hunting time and hunting success. The latter
increases, as in version I, asymptotically towards a maximum as prey density
increases:

F, = H, LoV (25)
v o YFr, +V

F, = H, —me? (26
a’ *Fr,+ 4 )

It should be noted that most values of the parameters Fr, and Fr, lead to
switching (Fig. 5), also without the special switch option described below.
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1 %
0.5 A1 a
0.5 1.0 Pr

Fig. 4. Examples of prey switch functions that show the influence of different parameter
values. Pr =V/(V + A); Sw=Fh, /(Fh, +Fh,).

(A) a,=a,, Swpb=05: 1, Swpa=—1.0; 2, Swpa=—0.5; 3, Swpa = 0.0; 4, Swpa =1.0; 5,
Swpa = 2.0.

(B)a,=a,, Swpb=02: 1, Swpa=—1.0; 2, Swpa = —0.5; 3, Swpa =0.0; 4, Swpa = 0.5; 5,
Swpa =1.0.

(C) a,=2a,: 1, Swpa=0.0, Swpb=0.5; 2, Swpa=1.0, Swpb = 0.5; 3, Swpa =1.0, Swpb
=0.2.
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0.5 1

S

0.5 1.0 Pr

Fig. 5. Demonstration of the predation switch effect obtained by using different parameter
values in the equations for functional response. 1, Fr,=17.5, Fr,=17.5; 2, Fr,=17.5,
Fr, = 35.0; 3, Fr,=17.5, Fr, = 500.0.

The parameter Fr can be considered an inverse measure of predator ef-
ficiency because in feeding models where feeding rate depends on search,
pursuit, and handling time, a short search time corresponds to a low
Fr-value. Also a predator population with a low Fr-value can persist on a
less-dense prey population than can one with a higher Fr-value (Tanner,
1975).

(5) Option 1 — prey refugia. Refugia means that all prey below a certain
prey density are unavailable for predation. Prey above this density are
subject to predation according to a relation that is comparable to that one
described for the basic model. The model is given by the following equa-
tions:

F,=0 if V< Ref, (27)

o F..(V—Ref))
v "VFrr, + V- Ref,

if V> Ref, (28)

Comparable equations give the feeding rate on alternative prey ( F,). This
model can be considered an extreme case of habitat heterogeneity (with
respect to prey vulnerability within a subhabitat).

(6) Option 2 — seasonal fluctuations in functional response. The variable Fr
in the equation for functional response (equations 24 and 25) is considered a
variable that follows a sine function:

Fr, =Fr, + Frymy Fr, sin(T2n — Fasg,) ) )

amp(v)

Fr, is given by a similar equation.
(7) Option 3 — habitat switching. The basic model of version II does not
take relative prey density into account. Usually a predator should prefer
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hunting in a habitat with a high prey density. This can be accounted for by
extending the model with a switch function that has appropriately fitted
parameters. Switching is in this section represented by the choice between
the two hunting habitats. The equation is purely descriptive and contains no
assumption concerning the processes leading to switching:

H,= (Pr3"2) /(Swhb®*ha=D) if Pr < Swhb (30)
H,=1-(1-Pr)>™ /(1 -Swhb)®™ ™V  if Pr> Swhb (31)

Swha represents the degree of switching; a strong preference for the habitat
with the more abundant prey type is modelled by a high value of Swha.
Neutral switching, where equations (29) and (30) become identical to equa-
tions (22) and (23) of the basic model, is obtained for Swha = 1. It is also
possible to model negative switching. This means that the predator spends
more time in the habitat of the less-common prey than is expected from the
relative abundance of this prey. A predator that spends the same time in
both habitats, regardless of prey abundances, represents an extreme case of
negative switching. Negative switching is modelled by values of Swha
between 0 and 1. Swhb represents the relative prey density where the
predator changes its preference from one prey to another (the inflection
point). This parameter makes it possible to account for the predator’s
evaluation of the relative value of the prey types. E.g., if individual weight of
the two prey types differ, the value of Swhb is affected by whether prey
abundance is measured in biomass or individuals.

DETERMINING THE PARAMETER VALUES

In this section I determine parameter values that are used in simulations
of the models (Table 2). It is sometimes not entirely clear what measurable
properties of natural populations that the different parameters represent.
This section can thus be considered as an example, with comments, of how
these measurements can be made, given a set of data from a natural
community. Most values are based on data from studies in the Revinge area.
Some values are based on averages from several species, others on data from
one species only. Data for predators refer to the food generalists, mainly cat
and fox. The use of data from cats requires special comments. Cats in the
study area are either domestic but free-ranging, or feral. The former hunt
wild prey, to an extent usually determined by themselves, but have also
access to food offered by their ‘owners’. Their number is mainly determined
by humans and virtually independent of prey density. The feral cats, mainly
males, live completely on food captured by themselves. Their number is
affected by prey densities. Two of the predator models (versions I and II)
are intended to model wild populations. Data for feral cats and in some
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Parameter values used when simulating the models. Values in parenthesis are used in
simulations of the submodel for a constant predator population

Section Parameter Value
Carrying K, 150 kg km ™2
capacities K, 225 kg km ™2
K ampey 0.85
Fasg ., 2.618 (K, peaks 1 June)
K, 1600 kg km™*
K, 2500 kg km™?
K ampia) 0.80
Fasg 3.403 (K, peaks 15 July)
A 1075 kg km ™2 (for other values, see Fig. 19)
A 1075 kg km ™2
A amp 0.35
Fas, 4.45 (A peaks 15 September)
Population T inax(v) 39
growth Timax(a) 23
Brnax 2.8
dy 017
d 0.83
I:::rll 0'5 Fmax
Time lag t 5
T 0.45 (in models with constant K )
0.15 (in models with fluctuating X))
Predator F .. 1.0 kg day ™!
Ki 2.53ind km™~?
One habitat Vul, 0.15 day ™! km ™2
Vul, 0.0040 day ™! km™2
Ht, ., 0.75
a, 0.15 day ! km ™2
Swpa 1.0 (0.0)
Swpb 0.2
Two habitats Fr, 17.5 kg km ™2 (25 kg km ~2)
Fir, 8.8 kg km™2 (12.5 kg km™?)
Ref, 10.0 kg km ™2 (10.0 kg km~?)
Fr, 20.0 kg km ™2 (30.0 kg km~?)
Frymp(v) 0.38 (0.00)
Fas,, 3.40 (Fr, peaks 15 July)
Fr, 500 kg km 2 (600 kg km ™ %)
Frr 500 kg km ™2 (600 kg km~2)
Ref 0 kg km ™2
Fr, 600 kg km ™2 (1450 kg km ™ 2)
Flymo(a) 0.50 (0.76)
Fas 5.76 (Fr, peaks 1 December)
Swha 9.0 (0.1)
Swhb 0.05 (0.05)
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instances for domestic cats are used to determine parameter values in these
versions. Data for domestic cats are used to give data on the proportion of
hunting time spent in either habitat and on the proportion of voles and
rabbits in wild prey. Data on total hunting time and total food intake for
domestic cats is not used. However, the model for a constant predator
population (version III) is specifically intended to model a population like
that of domestic cats. Where relevant, I have used data from the domestic
cat population for this model.

Prey densities

Determination of parameter values require, in several instances, data on
prey densities in the Revinge area at different times. These densities were
determined on basis of the following data (Table 3): (a) Density indices
(small quadrat method) in spring and autumn for field voles in ungrazed
habitat on peat soil (Hansson and Larsson, 1980, p. 9; Nilsson, 1981, p. 90,
Hansson, in litt.). These indices were available for all years of the study and
gave information on yearly fluctuation in overall density. (b) Density values
(removal trappings in 1-ha areas) in spring and autumn for ungrazed fields
on peat soil and on mineral soil (Erlinge et al., 1983). These values were not
available for all years and were made in different plots in different years.

1.1 1.V 1.vi 1. X 1.1 1.V 11.VII

Fig. 6. Assumed patterns of population fluctuations for voles (A) and rabbits (B). The arrows
indicate when actual density estimates were made. The rest of the graph is based on
interpolation.
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They were used to calibrate the index values to give information on absolute
densities. (¢) Data on yearly pattern of reproduction and predation (Erlinge
et al., 1983; Fig. 6a). These made it possible to interpolate densities between
sampling occasions.

Estimates of rabbit densities were based on night counts in sample plots
(Liberg, 1981, p. 33). These were corrected for the fraction of rabbits
invisible in dense (G. Jansson, University of Lund, personal communication,
1976) to give absolute densities. The pattern of density fluctuations between
sampling occasions was obtained from information on rabbit breeding in the
Revinge area (Andersson et al., 1979; Fig. 6b).

Carrying capacities

Vole population

If a population is constant over time and not subject to predation I
consider its density a measure of the carrying capacity in that particular
habitat. These conditions are of course difficult to find. The Revinge vole
population itself is ruled out as it is under heavy predation. Boonstra (1977)
has described a population of the vole Microtus townsendii that exhibits
some features suggesting it is at its carrying capacity. The population
fluctuated seasonally but there were no substantial between-year variations.
This is not very impressive for a study lasting only 2 years; however, most
observed Microtus populations fluctuate even over such a short time.
Furthermore, even compared to the most densely populated habitat in the
Revinge area, Boonstra measured high densities. The habitat studied by him
was called ‘grassland’. Although further details are not available to me I'd
suggest that the ungrazed fields on peat soil in the Revinge area that carry a
very luxuriant herb vegetation are more productive from a vole point of
view. The fact that the M. townsendii population stayed at such a high level
for 2 years strongly suggests that it was not overshooting a carrying capacity
but, possibly, close to it.

Spring and autumn densities of M. townsendii (45 g ind ') were 5000 ind
km~2 (225 kg km~2) and 22000 ind km™? (990 kg km~?), respectively.
Mean value for the whole year is assumed to be the mean of those two
values. I assume that the carrying capacity for field voles (30 g ind™?') in
fields on peat soil in the Revinge area (4 km?) was twice that density; 1200
kg km~2. The carrying capacity in ungrazed fields on mineral soil (4 km?) is
assumed to be that value divided by 3.3 (Table 3); 360 kg km™?2. This gives
an average value for the whole Revinge area (40 km?) of 156 kg km™2.

For the basic model I estimated carrying capacity with the mean density
over the year. For the optional model with seasonally fluctuating carrying
capacity I performed test simulations of the model to determine which
values of amplitude, mean carrying capacity, and the phase parameter that
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Fig. 7. Assumed pattern of seasonal fluctuation in carrying capacity and the result of
simulating densities (the graphs with smaller amplitude): (A) voles; (B) alternative prey.

produced the observed density fluctuations (Fig. 7a). For the phase parame-
ter of this optional model it was required that it should make the population
peak in the beginning of September (Fig. 6a).

Rabbit population

The rabbit population in the Revinge area increased until the winter of
1976 /77. During that winter it decreased drastically. This was not due to
long-term overgrazing but to an unusually severe winter with a thick and
long-lasting snow cover. I do not consider this decline a result of overshoot-
ing the carrying capacity. However, as predation was rather light (Erlinge et
al., 1983) and there was some evidence of overgrazing, I suggest that the
rabbit population was coming close to its carrying capacity. I assume that
this is 150% of the highest density measured before the decline. To de-
termine the parameters in the model for a seasonally fluctuating carrying
capacity I note that the seasonal fluctuations had an amplitude of 35% both
when the rabbit population was very dense and later, in 1979, when it had
the lowest density measured. I therefore assume that this amplitude applies
to a rabbit population at its (seasonally fluctuating) carrying capacity too.
The parameter values for mean, amplitude, and phase of this model was, as
for the vole population, determined by means of test simulations of the
model system until a fitting set of parameter values was found (Figs. 6b and
7b).

Population growth

Voles
The intrinsic rate of population growth (r,,.) is computed from the
equation e™> = A, where A is the number of surviving female offspring to a



285

female after 1 year. It is assumed that predation and intraspecific competi-
tion can be disregarded. The data used are from a cyclic population of
Microtus agrestis in southern Finland (Myllymiki, 1977). As this parameter
refers to an intrinsic property of a vole population there should be no
objection to using data from a population outside the Revinge area. In fact,
the hypothesis under test partly rests on the assumption that there are no
innate differences with respect to the intrinsic rate of increase between cyclic
and non-cyclic populations. Had there been, this could have been a suffi-
cient explanation of the observed differences in population dynamics. An
advantage by using a cyclic population is that the realised rate of increase
during the increase phase should be close to the intrinsic (maximum) rate of
increase. In this phase there is relatively little intraspecific competition and
predation is light. For the parameter determination I sum all daughters born
to an overwintered female during her second summer (GGR, sensu Myl-
lymiki) and all her granddaughters born during this summer. I assume that
all mortality is due either to predation or (directly or indirectly) due to
intraspecific competition and thus can be disregarded when determining
Foax- 1 base the computation on the number of embryos per female during
different months (Myllymiki, 1977, Fig. 13), a 5% prenatal mortality (Myl-
lymidki, 1977, p. 485), and 20% density-independent nestling mortality
(Myllymiki, 1977, p. 473). During two peak years these estimates yielded
values of 3.1 and 3.6 and during an increase year a value of 3.9. The latter
value was used for r,,,.

Rabbits

The computation of A and r,,, for the rabbit population is based on a
total production of 10 daughters per female and year that has been mea-
sured for the Revinge area (G. Jansson, University of Lund, personal
communication, 1976). All mortality is disregarded as I assume that this is
light in the absence of predation and intraspecific competition. A common
cause of death is myxomatosis but this is only important in dense popula-
tions.

Predators

The predator models have a different structure than the prey species
models. Population growth in the predator models is determined explicitly
by birth and mortality rates which, in turn, are determined by feeding rates.
Maximum birth rate is represented by the number of daughters per female
and year when feeding rate is not limiting. The model thus superficially
assumes that all individuals are equal in this respect. In reality it is more
likely that a population is heterogeneous, and that in a year with a low mean
feeding rate some individuals have a feeding rate that is close to maximum
while that of others is very low. The former reproduce close to maximum
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Fig. 8. Pattern of vole fluctuations obtained when simulating a system that only consists of a
vole population. Different values for the lag parameter (") are used. The x-axis is scaled in
years.

(A) Constant carrying capacity: 1, T=0.3; 2, T=04; 3, T=0.45; 4, T=05; 5, T=06.
(B) Seasonally fluctuating carrying capacity: 1, T=0.1; 2, T=0.15; 3, T=0.2.
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rate while the latter do not reproduce at all. However, the model may still
give realistic predictions if mean reproductive rate is that stated by it. This
heterogeneity suggests a way to determine maximum birth rate without
having access to a population where one knows that all individuals are
feeding at maximum rate. I compute mean litter size for all females that
have successfully reproduced. This is done for all years when data are
available (1975-1978) -and the best year for each species is chosen as
representative of the maximum birth rate. These values are 5.0 (fox), 7.5
(cat), and 4.0 (buzzard) (T. von Schantz, O. Liberg and M. Sylvén, personal
communication, 1980). The mean number of daughters was thus 2.8 and this
value is used for b_,,.

Basic mortality represents mortality that is independent of feeding rate. I
assume that the mortality of older individuals, from their second year and
on, is a good estimate of this mortality. These mortality rates are 0.15 (fox),
0.25 (cat), and 0.10 (buzzard) (T. von Schantz, O. Liberg and M. Sylvén,
personal communication, 1980). The mean value, 0.17, is used for d,. 1
assume that mortality is 1.0 when feeding rate is zero. This means that
starvation mortality, the maximum extra mortality caused by starvation, is
0.83. I assume that starvation begins to affect mortality when feeding rate is
50% of F,,,. This is motivated by the fact that the daily food requirement of
cats is 50% of the maximum value measured (see below).

The predators are assumed to breed once a year. As all individuals are
assumed to feed at adult rate from °‘birth’ on I take the time of birth as
half-way between the time of actual birth and the time when adult feeding
rate is reached. Information from the Revinge area (Liberg, 1981, p. 73; Von
Schantz, 1981a, p. 53; Sylvén, 1982, pp. 36 and 60) suggest that 1 June is a
good estimate of this.

Time-lag in vole intraspecific regulation

This time-lag cannot be measured directly, especially as it is not known
precisely what it represents. What is required from this submodel is, how-
ever, simply that it should behave in a predescribed way, i.e. to cycle. I
therefore carried out test simulations of the vole population model alone
with different values for the lag parameter. Only in a rather narrow interval
is the population predicted to cycle without being periodically exterminated.
The parameter values are chosen from this interval (Fig. 8).

Intraspecific predator population regulation

Maximum feeding rate
This is a scaling factor, the value of which can be chosen arbitrarily for
the model predator. It does not influence the results of the simulations
1

qualitatively. I use the value 1 kg day™".
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TABLE 4

Maximum feeding rate and mean densities for generalist predators in the Revinge area. The
density is measured just before the breeding time. The model predator has a F,, -value of 1.0

Fox Mean density D:o (ind km™?) D:o. measured
1975-1978 (ind) in model pre-

dator units

Fox 0.9 353 0.88 1.0

Cat (all) 0.5 67 1.68 0.84

Polecat 0.35 25 0.63 0.22

Buzzard 0.30 40 1.0 0.30

Tawny owl 0.16 31 0.78 0.05
241

In the next section I determine another parameter value (Ki). To do this 1
need the actual F, -value for each of the predators in the Revinge area. The
best direct measure of F,,, for any of the Revinge predators is that for the
cat population. In the winter of 1976 /77 there was much snow and a very
high abundance of rabbits in poor condition that were easy to catch. At this
time the feeding rate of feral cats was measured to 496 g day ! (Liberg,
1981, p. 44). Daily food requirement was 250 g day ! (Liberg, 1981, p. 44). I
thus assume that F_, for the other predators too is 2.0 times their daily
food requirement (Table 4, Erlinge et al., 1982).

Measure of intraspecific regulation

The optional model for intraspecific predator population regulation as-
sumes that there is a certain density that cannot be exceeded. The proximal
mechanism with this effect may be territoriality and other social processes
that increase in intensity with increasing population density and that have
the effect of decreasing per-caput reproduction. Different natural popula-
tions occur at very different densities despite roughly similar feeding rates.
This is possible if the parameters of the assumed process vary between
different populations. These parameters are possibly subject to both genetic
and cultural evolution. The desired parameter Ki can be determined for the
Revinge area using equation (13) if we assume that the populations under
consideration are in equilibrium and if density, birth rate and death rates are
known. I do this using the density of the combined predator populations in
the Revinge area (Table 4) and the previously determined birth and death
rates. The coefficients of variation for predator densities in 1975-1978 were
relatively low (fox =5.9, cat = 13.1, buzzard = 8.6) (Erlinge et al., 1982),
supporting the equilibrium claim.
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Fig. 9. Relation between the prey density and the number of hours that a fox spends hunting
per 24 h. The regression lines are fitted by eye. The continuous line is an approximation of
actual data. Females with young (squares) are alternatively represented by two thirds of
measured values (filled squares), assuming that the rest is due to their status as mothers. The
broken line is fitted on basis of these values.
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Fig. 10. Relation between the fraction of voles in the prey populations (Pr) and their fraction
in the prey diet (Sw). Circles represent cats and squares foxes. The three switch functions
shown are based on the following parameter values: 1, Swpa = 0.0, Swpb = 0.20; 2, Swpa =1.0,
Swpb = 0.20; 3, Swpa =1.5, Swpb = 0.20. Function 1 is considered to give the best fit to the
cat data and is used when modelling a constant predator while function 2 is considered to
give the best fit to the fox data and is used in the other predator models.
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Parameters in the one-habitat predation process model

Hunting time

The model assumes that hunting time takes its maximum value when
hunting success approaches zero. Assuming that this occurs when prey
density is zero, this value can be determined by extrapolating a plot of
hunting time vs. prey densities. Such data are available from radio trackings
of foxes (Von Schantz, 1981a). These data are based on information on 11
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Fig. 11. Plots of prey intake at different prey densities. F,,, (maximum predator feeding
rate) is taken from other information and with this constain functional response curves have
been fitted by eye for the basic model and for the model with prey refugia. The basic model is
also constrained by the requirement that the line should start in origin. Ref, Fr, and Frr, are
parameter values determined on basis of the obtained graphs: (A) feral cat predation on
voles; (B) feral cat predation on rabbits; (C) domestic cat predation on voles; (D) domestic
cat predation on rabbits.



291

Vole intake (g) C
Fmax {——=-—-—-—-=-=-=-~~—=~-—~-———————~ =
.
100 1
_________ ;.._ [——— e — —— — o — o — .
. ]
e ]
' o e 1
- 20 'Fr~25 30 40
Refv110 kg vole / km?
Frr,»12.5
Rabbit intake (g) D
Fmax - — === =-=-"===-"—""=-"-"—"=-"=-"-"—"—-—————
*
100 4 . b
_______ grE— o m - -
: .
e
i .
. s 1000 .
Refa" 0 Fra=600 kg rabbit / km?

Frra=600

Fig. 11. continued.

different foxes, tracked during 16 different periods. The data confirms the
assumption that hunting time decreases with increasing prey abundance.
Extrapolating to zero prey densities gives the desired parameter value (Fig.
9).

Vulnerability

Vulnerability is defined as the proportion of prey biomass living in one
area unit that one individual predator captures and consumes during 24 h of
hunting. Data are available for vole vulnerability with respect to fox and cat
predation and for rabbit vulnerability with respect to fox predation. Foxes
hunting for rabbits required 5 h to fill their food requirement while the
corresponding figure when hunting for voles was 7 h (Von Schantz, 1981b,
p- 64). Based on a fox feeding-rate of 450 g (Erlinge et al., 1982) and rabbit
and vole densities in April (above) this gives a rabbit vulnerability of 0.0040
and a vole vulnerability of 0.144. Rescaling to the model predator with a
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maximum feeding rate of 1.0 (compared to 0.9 for a fox) gives 0.0044 and
0.16, respectively. Vole vulnerability to cat predation can be determined
from data on the number of minutes a cat needs to capture a vole in
different months (Liberg, 1981, p. 62). After rescaling this gives the values
0.15 (Jan.—April), 0.13 (May-Aug.), and 0.13 (Sept.—Dec.). These values are
remarkably close to that estimated from fox data. They do not justify the
consideration of seasonal variation in vulnerability.

Prey switching
The prey switching function gives the relation between the relative prey
population density (vole/rabbit) and the relative abundance of captured
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Fig. 12. Plots of prey intake at different prey densities. Functional response curves have been
fitted by eye for the model with seasonal variation in functional response. Sp, = spring;
Su, = summer; A, = autumn; W, = winter. The x-intercept of the dashed lines gives, as in
Fig. 11, the Fr-values: (A) feral cat predation on voles; (B) feral cat predation on rabbits; (C)
domestic cat predation on voles; (D) domestic cat predation on rabbits.
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Fig. 12. continued.

prey. To determine the shape of this function I use the following informa-
tion: (a) Fox prey during four autumns, 1974-1977. The first two were
pooled because prey abundances were very similar. (b) Cat prey during
seven different periods, representing different years and seasons. I compare
these data points to three different switch functions (Fig. 10). Function
number 1 (Fig. 10) is considered to give the best fit to the cat data and is
used when modelling a constant predator, while function number 2 fits the
fox data and is used for the other predator models.

Parameters in the two-habitat hunting process model

Functional response

Functional response refers to the relation between prey abundance and
the feeding rate of an individual predator. I model this relation with a
function that increases asymptotically towards a maximum value. This shape
has been termed “type II functional response” (Holling, 1965). Keith et al.
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Fig. 13. Seasonal variation in functional response parameters. The parameter values were
estimated from the plots in Fig. 12. (A) feral cat predation on voles; (B) feral cat predation
on rabbits; (C) domestic cat predation on voles; (D) domestic cat predation on rabbits.

(1977) present data that support the use of this type of function for
vertebrate predators. The function has one parameter, Fr. I determine this
by plotting available data points and fitting the function by eye (Figs.
11-13). The parameter value is given by the prey abundance where the
function intersects the line F= F, ., /2. This point is read off from the fitted
lines. Useful quantitative information is only available for the cat popula-
tion in the Revinge area. Separate determinations are made for each season,
for the pooled material, for domestic and feral cats, and for a model
including refugia and one without. To determine the function from the data
points I must know F,_, . I use the value 496 g for feral cats and 175 g for
domestic cats (the rest of their food is supplied by ‘owners’) (Liberg, 1981, p.
44 (Fig. 6) and p. 43 (Fig. 5), respectively). The feeding values in the data
plot represent biomass rabbit or vole consumed per day, if all hunting takes
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place in one habitat. I compute this from data on total prey intake per day
(Liberg, 1981, p. 43), times the fraction of the diet made up by rabbits or
voles (Liberg, 1981, p. 42), divided by the proportion of total hunting time
spent in rabbit or vole habitat, for which values I use 40% and 60%,
respectively. This is based on 148 observations of hunting cats before the
rabbit decrease and 660 after. Out of these 43% and 38% observations,
respectively, were in the rabbit habitat and in the vole habitat (O. Liberg,
personal communication, 1980).

The data usually support the assumption that there is a seasonal variation
in the value of the functional response parameter (Fig. 13). With respect to
rabbit hunting, the value is least (and thus hunting efficiency highest) during
summer. This can be explained by the presence of easily caught juveniles
during this season. On the contrary, vole-hunting efficiency is highest during
the winter when vegetation cover is poor. The data for domestic cats do not
support the recognition of seasonal variation in vole-hunting functional
response. This is best explained by the decreased overall level of outdoor
hunting by these cats during winter, as they prefer a warm place indoors

100 A .

80 A
100

% time in vole habitat
[ ]

60 -

40

20 1

10 20 30
% vole biomass
Fig. 14. Relation between the percentage vole of total prey biomass and the proportion of
time that radiotracked foxes spent in the vole habitat. The switch function chosen to
represent the data (Swha =9, Swhb = 0.05) is also shown. The inset shows the complete
graph, to 100%. Each data point represents one for that has been tracked for 1 to 2 months.
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Fig. 15. As Fig. 14 but for cats. The two data points represent pooled data for all cats before
and after the rabbit decrease, respectively. The switch function shown is based on the
parameter values Swha = 0.1 and Swhb = 0.80.

(pers. observ.). In accordance with this interpretation, seasonal variation in
rabbit-hunting functional response is even more pronounced for domestic
than for feral cats.

Habitat switching

The habitat-switch function gives the relation between the vole density
and the proportion of all hunting time that is spent in vole habitat. I have
data from cat and fox populations available to describe this function. The
fox observations refer to 10 different foxes that have been radiotracked
during 13 different periods. Despite the wide scatter in the data points it is
clear that the most simple model (neutral switching) must be refuted (Fig.
14). The function that is determined from fox data will be used in versions I
and II of the predator model. The cat data are summarized as two data
points, one referring to the situation before the rabbit decrease, one to the
situation after (Fig. 15). The two points are superficially indistinguishable
from the fox data (Fig. 14). However, as each of the cat data points is based
on a large sample it is justified to conclude that the cats exhibit negative
switching. This is biologically reasonable; as most cats are domestic they are
not under food stress and much of their hunting may have explorative
background. The cat data is used to determine parameter values for version
I1I of the predator model.

SIMULATIONS
Simulation program

The simulations were carried out at the Lund University Computer
Center using the program SIMNON (Elmgqvist, 1977). The subsystem de-
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Simulated combinations of submodels

297

One-species models

Two-species models
of systems without
diffuse alternative

prey

Two-species models
of systems with dif-
fuse alternative prey

Three-species mod-
els

Either of two vole
population models
(below)

A vole population
without time-lag
OR

a vole population
with time-lag

Either of two one
species models
(column 1) PLUS
either of three
predator models
with

starvation mortality
(below) !

A predator popula-
tion without intra-
specific population
regulation

OR

a predator popula-
tion with intra-
specific population
regulation

OR

a constant predator
population

Either of two one
species models
(column 1) PLUS
either of two
predator models
without

starvation mortality
(below) !

A predator popula-
tion without intra-
specific population
regulation

OR

a predator popula-
tion with intra-
specific population
regulation ®

Either of six (2X3)
models of a two
species system with
starvation mortality
(from column 2)
PLUS either of two
models of an alter-
native prey popula-
tion (below) 23

A model of an
alternative prey
population that
grows logistically
OR

a model of a
constant alternative
prey population *

! The different two-species models were simulated with each of the following three predation
process models: (1) Hunting in one habitat. (2) D: o with prey refugia. (3) D: o with seasonal
variation in hunting efficiency. The model for seasonal variation in prey vulnerability was not
used as data did not support the relevance of this option.

2 The different three species models were simulated with each of the following seven
predation process models: (1) Hunting in one habitat. (2) D:o with prey switching. (3)
Hunting in two habitats. (4) D:o with habitat switching. (5) D: o with prey refugia. (6) D:o
with habitat switching and prey refugia. (7) D : o with seasonal variation in hunting efficiency.
? The full set of simulations is carried out for the case where neither voles nor alternative prey
have a seasonally varying carrying capacity. This option is used for both prey types
simultaneously in a limited series of simulations.

4 If a model of a predator population without intraspecific regulation is used it is obviously
irrelevant to use a constant alternative prey. The predator population would grow without
limit in such a model.

% The distinction between predators with and without diffuse alternative prey has no meaning
if the predator population is constant.
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scriptions are stored on data files. Commands issued from a terminal make
it possible to combine different subsystems into a complete system, choose
parameter values, carry out the simulations, and have the corresponding
graph drawn on a graphic terminal. The results are permanently recorded by
means of a plotter.

Simulated systems

Logically possible and meaningful combinations of subsystems have been
simulated (Table 5). Simulating the two-habitat hunting model with preda-
tors and only one prey (voles) sounds like a contradiction. This model,
which was made in order to make the inclusion of an alternative switching
process possible, uses other parameter values than does the one-habitat
hunting model. However, both models are meaningful in the one-prey case,
which is a special case of them. For this case both models use essentially the
same equation, after rearranging equations (14)—(16) and (22), (23) and (25),
respectively:

Fo.V

F— 32
Vul, H_,,
F..V

E=f v (33)

There is an exact correspondence if one assumes that Fr, =
E,../(Vul, H_.). Actually, the two-parameter value determination ap-
proaches yield somewhat different values, Fr,=17.5 kg km~? and
F,../(Vul H_, )=28.9 kg km~ % For comparison with the two predation
process models in the three-species case I have simulated both models also

TABLE 6

Modified parameter values used for simulations of the models. Values in parenthesis are used
in simulations of the submodel for a constant predator population

Vul, 0.03 day ™!

a, 0.03 day !

Swpb 0.6

Fr, 52.5 kg km™2 (75 kg km~?)
Frr, 263 kg km™? (37.5 kg km™?)
Ref, 30.0 kg km ™2 (45.0 kg km~2)
Fr, 60.0 kg km ™2 (90.0 kg km™2)

Swhb 0.15
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in the one-prey case. Despite the difference in parameter values the results
are essentially identical for almost all cases (Table 6, Figs. 16 and 17).

The effect of a seasonally varying carrying capacity is studied with a
limited set of simulations only (Fig. 18). The different models have been
simulated with two sets of parameter values. One is based directly on
measured data as described above (‘Revinge parameter values’) (Table 2).
However, for most models it turns out that the two-species systems are not
feasable with these values; the vole population is quickly eliminated. The
central question in this study, whether alternative prey can stabilize vole
cycles, becomes meaningless. Of course it is possible that a two-species
system, with voles and the Revinge predator community, is unable to persist.
It does, however, seem more likely that the efficiency of the predators has
been exaggerated in my parameter value determinations. This would be the
case if it were based on underestimated vole-density values. Erlinge et al.
(1983) present some evidence that this is so and I therefore, alternatively,
assume that vole density is three or five (for the two-habitat and the
one-habitat models, respectively) times higher than those presented previ-
ously (Table 2). Parameter values affected by this modification have been
recalculated. This gives a second set of parameter values (‘the modified
parameter values’) (Table 6). These values give realistic oscillations for the
two-species system. Each model is simulated for a duration of 30 years. The
simulations were interrupted if the dynamics of the system was obvious after
a shorter time. This was done to reduce computer costs.

RESULTS AND DISCUSSION
Which models are meaningful and realistic?

My criterion for a realistic three-species model is that between-year
variation is slight, thus modelling the situation in the Revinge area. Vole
populations in meaningful two-species models should be cyclic.

Parameter values

Simulations of the three-species models give approximately the same
results with both sets of parameter values. Only for one of the models (a
constant predator population hunting in one habitat) is there a substantial
difference (Table 7, row E vs. F, K vs. L). The model predicts the disap-
pearance of the vole population when the ‘Revinge values’ are used.

The two-species models without intraspecific regulation of the vole popu-
lation predict that the vole population is exterminated if the ‘Revinge values’
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are used (Table 7, rows A, C, and E) but predict a cyclic system (Table 7,
rows B and D) or a constant system (only for the two habitat model) (Table
7, row F) if the ‘modified values’ are used. The two-species models with
intraspecific vole population regulation predict very regular cycles (Table 7,
rows G and I) or extinction of the voles (Table 7, row K) if the ‘Revinge
values’ are used. More irregular and seemingly more realistic cycles are
usually predicted if the ‘modified values’ are used (Table 7, rows H and J).
I consider the set of ‘modified parameter values’ the most realistic one.

Predator model

The three-species models predict strong fluctuations of the system if it
contains submodels of a predator population that is neither intraspecifically
regulated nor constant (Table 7, rows A, B, G, and H). These models are
unrealistic with respect to the Revinge system.

The model predicts a constant vole population if the predator population
is intraspecifically regulated and the vole population is rot intrinsically
cyclic (Table 7, rows C and D). Weak vole cycles with a 2-year period are
predicted if the vole population is intrinsically cyclic (Table 7, rows I and J).
Both patterns may be fair approximations of the Revinge system. Thus the
model can give a qualitatively correct picture of the Revinge system if the
predator population is intraspecifically regulated.

The models with a constant predator population predict two-species
systems that are constant or where the vole population is exterminated
(Table 7, rows E, F, K, and L). This may be correct, as there is no
information available on a corresponding natural system (e.g. one with
domestic cats as sole predators). This shows that voles are less likely to cycle
when interacting with this kind of predator than with more conventional
kinds. However, as domestic cats are a minority of the predators in the
Revinge area and, most likely, in southern Sweden in general, I do not
consider this as an explanation to the absence of vole cycles. Voles are
usually able to persist in the system with a constant predator when alterna-
tive prey is present. This makes sense as the number of predators is given
and the only effect of alternative prey is to relax predation pressure on voles.

Alternative prey model

In three-species models with a territorial or constant predator population
(Table 7, rows C-F, I-L) and a logistically growing alternative prey, the
latter is usually predicted to stabilize at a density close to the one measured
for the rabbit population in the Revinge area in the years before the
decrease, 1075 kg km~? (Figs. 16, 17). Modelling the system with an
alternative prey that is constant thus gives the same predictions and this
appears to be a realistic simplification.
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The behaviour of this model together with a nonterritorial predator is not
considered as that predator model has been shown to be unrealistic for the
Revinge system.

If version I of the predator submodel (no starvation mortality) is com-
bined with a vole submodel this gives a model that I tentatively have
labelled a system with ‘diffuse alternative prey’. However, unless the re-
fugium option is included, voles are always exterminated in these systems.
The reason is that the predator population in these models decreases very
slowly, even at very low vole densities. Furthermore, as feeding on the
alternative prey is not modelled, the predator always feeds exclusively on
voles. Actually, an extreme form of negative switching is assumed (Fig. 4A:
1, 2). This version of the predator submodel is not considered realistic. This
result constitutes support for my previous claim (Loman, 1984) that this
model (labeled model I in Loman, 1984) is less realistic than the modifica-
tion with starvation mortality (labelled model IIT) or the continuous version
of that model (model II).

Predation process model

The switching options affect different models in conflicting ways. The
prey-switching option sometimes increases realism in the respect that three-
species models where the basic models predict extinction of the voles turn to
such models where the voles persist (Table 7, rows A-D, G-K). These cases
include those two that have been considered most important from the
previous results (Table 7, rows D and J, Figs. 16 and 17). In some cases the
option has no qualitative effects (Table 7, rows E and F) and in one case it
increases cyclicity (Table 7, row L).

The habitat-switching option usually has no qualitative effect. However, it
increases cyclicity slightly in one case (Table 7, row J) and decreases it in
two (Table 7, rows I and K). This is related to the fact that the basic
two-habitat model (on which the habitat-switching option is applied) con-
tains elements of switching itself (Fig. 5).

The introduction of refugia gives rise to drastic changes in the two-species
models. Very constant systems are predicted. If introduced in the three-
species models no important effects are obtained from the introduction of
refugia.

The introduction of a seasonally varying predation efficiency does not give
any changes from the predictions made by the basic models. This conclusion
is reached when studying models both without a seasonally varying carrying
capacity (Table 7, Figs. 16-17) and models with a seasonally varying
carrying capacity (Fig. 18).

The introduction of a seasonally varying carrying capacity does not affect
the predictions of the model with respect to between-year dynamics. The
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within-year dynamic becomes, however, considerably more realistic (Fig.
18).

How realistically can the Revinge system be modelled?

A qualitatively realistic behaviour was shown by a system composed of a
territorial predator, a logistically growing (or constant) alternative prey and
either of the two vole models. The one-habitat version requires the switching
option for a realistic behaviour. In the two-habitat version, no special
switching option is required. The use of refugia and seasonality options was
tested for this version and found not to increase realism. A comparison of
these models’ quantitative density predictions and densities actually mea-
sured in the Revinge area gives a reasonable agreement (Table 8). This gives
some confidence to the approximations made when determining parameter
values and choosing functional relations for these models.

TABLE 8

Predicted equilibrium densities (or mean densities of cyclic populations) for three-species
models with territorial predators, logistically growing alternative prey and modified parame-
ter values (column 3 in Figs. 16 and 17). The values that actually were measured in the
Revinge area were: Predators (all generalist predators added and recalculated to model
predator (F,,, =1.0 kg day~!) units (Table 5))—2.4 ind. km™2. Rabbits (before the decrease
in the winter 1976 /77 that I consider due to factors external to the system)—1075 kg km 2,
Voles (yearly mean value (Table 3))—20 kg km ™2, The modified parameter values were based
on assumed vole densities of 60 and 100 kg km™2 (for the two-habitat and one-habitat
versions respectively)

Vole model without Vole model with
time lag time lag

Predators Rabbits Voles Predators Rabbits Voles

Vole model One habitat model

without time No options 2.5 1100 0 25 1100 0
lag Ditto. Switching 2.5 950 130 25 1100 30
Two habitat model.
No options 25 1150 130 25 1200 120
Ditto. Switching 2.5 1150 150 25 1250 85
Ditto. Refugia 2.5 1200 120 25 1200 120

Ditto. Switching
and refugia 2.5 1150 145 25 1250 80

Ditto. Seasonality 2.5 1200 125 25 1200 120
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Can the presence of an alternative prey stabilize vole cycles?

Yes, if the predator is territorial it is possible to model a system that is
cyclic with only voles and predators present but stable when an alternative
prey is present (Figs. 16 and 17).

The version of the alternative-prey models where this is kept constant can
be used to give some interesting predictions. If it is correct that vole cycles
are absent from the Revinge area because of the presence of rabbits one
would expect cycles to appear after the decrease in rabbit density 1976 /77.
This is especially true as the rabbit density stayed low for several years, even
decreasing further to a minimum value in 1979 of 135 kg km™2. The top
density in 1976 was 1075 kg km ™. However, no vole cycles have appeared
but in light of the present model this field observation does not contradict
the hypothesis. The model predicts a relatively constant vole population
both at the top rabbit level (1075 kg km~?) and at the low level measured
(135 kg km™?) (Fig. 19). However, the effect of alternative prey is, as one
intuitively assumes, quantitative and not qualitative. A simulation with a
constant alternative prey level of 25 kg km™? yielded a cyclic vole popula-
tion (Fig. 19).

CONCLUSIONS

The presence of alternative prey is a possible explanation for the relative
constancy of the field vole population in the Revinge area.

A predator population that by factors external to the system is fixed at a
level similar to that of the domestic cat population may stabilize vole cycles.

Switching in a broad sense may contribute to the dampening effect of
alternative prey.

The presence of seasonal fluctuations in prey carrying capacity and in
prey vulnerability does not affect the between-year dynamics of the vole
population. This study does not support the hypothesis that such fluctua-
tions are important for the dampening effect of alternative prey.

This study could only demonstrate a dampening effect from an alternative
prey if the predators are territorial (or have other forms of intraspecific
regulation). The hypothesis that territoriality increases the probability that
alternative prey stabilizes vole cycles is thus supported.

Refugia have a stabilizing effect on all systems, but cyclic two-species
systems can be stabilized by the addition of alternative prey even if refugia
are not present. The hypothesis that their presence is important for the
stabilizing effect of alternative prey is thus not supported. However, refugia
and even weaker forms of habitat heterogeneity remain an alternative (to
alternative prey), independent explanation for regional differences in vole
population cyclicity. The present study is not a critical test in this respect.
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