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ABSTRACT 

Loman, J., 1988. Altemative prey that decreases vole population cyclicity: a simulation study 
based on field data. Ecol. Modelling, 40: 265-310. 

A model of a one predator-two prey system is presented. Different versions of the model 
are simulated using parameter values based on field data from a study of a vertebrate 
community in southern Sweden. Some versions and sets of parameter values produce a cyclic 
system when only one prey (based on vole-like parameter values) is included but a rather 
constant ('stable') system when both prey types are included. This supports the hypothesis 
that an alternative prey species may make the difference between cyclic and 'stable' vole 
populations. The hypotheses that predator territoriality and switching is important for this 
effect of alternative prey are supported. The results do not support the premise that the 
possible existence of prey refugia or of a seasonally varying prey carrying capacity and prey 
vulnerability are important factors for this alternative prey effect. 

INTRODUCTION 

Hypothesis 

Vole populations in northern and central Sweden cycle on a spatially 
large scale with population peaks every 3 or 4 years. Populations in southern 
Sweden fluctuate considerably less and large-scale cycles have not been 
detected (Myllym~iki et al., 1977). Such a non-cyclic field vole Microtus 
agrestis population is found in the Revinge area in southern Sweden 
(55 °40' N, 13 ° 30'E). Indigenous populations of voles, vole predators and 
alternative prey species have been the subject of studies for several years 
(Erlinge et al., 1982, 1983, 1984). As a result of these studies it has been 
hypothesized that the absence of severe fluctuations in the vole population is 
due to the presence of alternative prey, mainly rabbits, for the voles' 
predators. Quantitatively the most important vole predators at this locality 
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are foxes, cats, and buzzards. It is argued that these alternative prey support 
dense predator populations that, without time lag, increase their consump- 
tion of voles when these increase in numbers. The hypothesis can be 
extended and specified further by assuming that the dampening effect on the 
vole population is made possible, or at least supported, by the presence of 
additional characteristics of the system: 

(1) Switching, i.e. disproportionate predation rate on abundant prey. 
(2) Seasonal fluctuations. Of particular importance could be seasonal 

fluctuations in carrying capacities that allow the alternative prey to increase 
in spring before the vole population does so. This should contribute to a 
small, or absence of a, time lag in the predators' response to increasing vole 
population densities. 

(3) Predator intraspecific population regulation. This could take the form 
of territoriality that could prevent the building up of very high predator 
populations with ensuing vole and predator crashes - cyclicity. 

(4) Refugia. It could be that habitat heterogeneity, an extreme form of 
which is prey refugia, is critical for the levelling of population cycles. This 
seems to be a hypothesis that deserves to be tested as it can be argued that 
the south Swedish habitat, with a mixture of arable land and forest, is more 
heterogeneous than the north Swedish habitat which is predominately taiga. 
Although not obvious it could be that some habitats in south Sweden give 
particular good protection from predation. 

Testing the hypothesis 

The hypothesis and the extensions can be tested in several ways. In a 
descriptive study one examines several predator-prey communities that 
differ in ways critical to the predictions of the hypothesis. Basic is of course 
the comparison of communities with and without alternative prey. There 
may, however, be difficulties finding communities that only differ with 
respect to the factors one wishes to test. In an experimental study one 
manipulates a community. One can eliminate an alternative prey from a 
community and observe the changes in dynamics. For meaningful results it 
may be required that such manipulations be rather extensive. The present 
work constitutes another kind of test of the hypothesis. I formulate a set of 
alternative simulation models of a predator-prey community and examine 
their properties when simulated with one and two prey species. This ap- 
proach alone does not give a full understanding of the system, but neither do 
the other approaches. The importance of factors that are not included in the 
model is not evaluated, thus it is not possible to prove that a particular 
factor is necessary and without alternatives for a particular behaviour of the 
system. However, this approach does do two things: 
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(1) One can conclude that the system can behave in a particular way if a 
certain factor is operating. This is one kind of support we should request for 
a hypothesis - -  if no one is able to model a system that behaves realistically 
when a particular factor is included, this clearly weakens the support for the 
hypothesis. 

(2) If a system behaves realistically without the inclusion of a factor this 
disproves the validity of a hypothesis that states that this factor is important.  
'Behaves realistically' does not mean precise numeric correspondence, only a 
qualitatively correct behaviour of the model. However, a good fit increases 
the confidence one can have in the model and its predictions. 

These two points constitute the rationale for this study. 
Simulation models have been used to study hypotheses concerning 

vertebrate communities (e.g., Powell, 1980; Rabinowich et al., 1985). A 
much-abridged version of the present study is included in the paper by 
Erlinge et al. (1984). 

Principles used when constructing the models 

The purpose of the study is to validate the following principles that have 
been followed when constructing the models: 

(1) The models are constructed in a way that makes them predict cyclic 
vole populations when predators but no alternative prey are present. How- 
ever, the study is not concerned with the origin of vole cycles. Therefore two 
alternative vole models are constructed. One assumes that vole cycles are 
generated within the vole population or by an interaction between the vole 
population and its food. This model predicts cyclicity in the single-species 
case too. The other model assumes that vole cycles are produced by an 
interaction between voles and their predators. In this model the vole 
population is constant in the absence of predators. 

(2) The model is specifically made to test the hypothesis as applied to the 
Revinge system. Parameter values and assumed functions are usually based 
on and verified with data from the Revinge area. 

(3) I make estimates of functions and parameter  values, sometimes based 
on information from other studies, if no data from the Revinge area is 
available. A test of these estimates is available in the sense that predictions 
of the model in the three-species case can be compared to the real dynamics 
of the studied populations in the Revinge area. 

(4) In some cases I do not think that verification of a parameter  value or 
function is necessary. This is the case when a function represents a mecha- 
nism that cannot be accurately measured but is still desirable to test. For 
example, I represent 'seasonally fluctuating carrying capacity' with a sine 
function despite the fact that I have no measurements of carrying capacity 
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that support precisely this function. However, possible qualitative effects 
from a naturally fluctuating carrying capacity ought to be similar to those 
fluctuating according to a sine function. 

The rationale of the study does not require that the parameter values are 
numerically correct. If the model behaves as the hypothesis predicts (without 
taking resort to absurd parameter values) this supports the hypothesis. 

MODELS 

I construct the models as combinations of four submodels: the vole 
model, the alternative prey model, the predator model, and the predation 
process model (Fig. 1). This simplifies the presentation of the models and 
the execution of the simulations. Each submodel takes any of several 
versions and may be extended with options. Some of these options apply to 
all versions, whilst others apply to some of them only. I use several versions 
to find those that are realistic in the three-species case and are thus valid for 
the Revinge area. The options represent factors the importance of which I 
want to test. 

No explanations of symbols are given in the text in order to save space. 
The reader is throughout referred to Table 1. 

Mathematical description of the models 

Vole model 
(1) Version I - -  without time-lag. I assume that vole population growth 

depends on the density of the vole population itself (according to the 

= P  I 
Vole population 
dynamics 

P Fv 
Altemative prey 
population dy- 
namics 

A - I  

Predator popula 
tion dynamics 

IF 
Feeding process 

Fig. 1. Four submodels and the relations between their inputs and outputs. A, P and V, 
number of alternative prey, voles, and predators, respectively; F, predator feeding rate; F a 
and Fv, feeding rate on alternative prey and voles, respectively. 
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List of symbols used 
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State variables 
A Alternative prey population (biomass per area) 
P Predator population (individuals per area) 
V Vole population (biomass per area) 

Parameters 

A 
X 
a 

A amp 

bm~, 

db 

d s 

F~it 
rm~ 
Fr 
Frr  
Fr  
Framp 
Fas a 
Fas fr 
Fas K 
Fas ~1 
Hmax 
K 
K 
Kamp 
Ki 
P 
rma~ 
Ref 
Swha 
Swhb 
Swpa 
Swpb 
T 
tm 
Vul 

V-6I 
Vul  amp 

A given density of the alternative prey (biomass per area) 
Mean density of the alternative prey 
A parameter in the prey switch function 
Measure of the magnitude of seasonal fluctuations in the density of the alternative 
prey 
Birth rate of the predator when this is feeding at maximum rate (offspring per 
individual and year) 
Basal death rate of the predator. Mortality (fraction dying per year) that is not 
affected by feeding rate 
Starvation mortality. Further mortality when no food is available 
Feeding rate below which extra mortality (in addition to db) takes place 
Feeding rate of a predator that is not limited by prey density (biomass per time) 
A parameter in the equation for functional response 
A parameter in the equation for functional response with prey refugia 
Mean value of a seasonally fluctuating functional response 
Measure of the magnitude of seasonal fluctuations in functional response 
Phase of the equation for the density of a given alternative prey 
Phase of the equation for functional response 
Phase of the equation for a seasonally fluctuating carrying capacity 
Phase of the equation for a seasonally fluctuating prey vulnerability 
The proportion of time that a predator spends hunting when success is low 
Carrying capacity for a prey population 
Mean value of a seasonally fluctuating prey carrying capacity 
Measure of the magnitude of yearly fluctuations in prey carrying capacity 
A measure of the strength of predator intraspecific population regulation 
A given density of the predator population 
Maximum prey population growth rate 
Size of prey refugia (density of unavailable prey) 
A parameter in the equation for habitat switch 
Another parameter in the equation for habitat switch 
A parameter in the equation for prey switching 
Another parameter in the equation for prey switching 
Time-lag in the voles' response to changes in carrying capacity 
Month of predator reproduction 
Prey vulnerability. Proportion of prey biomass that is killed and consumed per time 
and area unit by a predator individual 
Mean value of a seasonally fluctuating prey vulnerability 
Measure of the magnitude of seasonal fluctuations in prey vulnerability 

To be continued 
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TABLE 1 (continued) 

Variables 
b Current predator birth rate 
d Current predator death rate 
F Predator feeding rate (biomass per predator individual and time unit) 
Fh Netto feeding rate (biomass per predator individual and time unit) 
Fr Current value of a seasonally fluctuating functional response 
H Current predator hunting effort (proportion of time used for hunting) 
K Current value of a seasonally fluctuating prey carrying capacity 
Pr Biomass of voles as a proportion of all prey present 
Vul Current value of a seasonally fluctuating prey vulnerability 

relation given by the logistic model) and on the decrease caused by  preda- 
tion: 

d V / d t  = Vrma~,v)(1- V / K v ) -  P F  v (1) 

(2) Version H - -  with time-lag. In this version I assume that the density- 
dependent  regulation of the vole population takes place with a time-lag. This 
lag could be related to the time taken by food plants to recover after grazing 
(May, 1973) or, if voles are subject to cyclic selection with respect to density 
sensitivity (Krebs et al., 1973), to generation time. Whichever the back- 
ground, an equation with time-lag can cause cycles that are generated within 
the submodel. This means in the present context a vole population that 
cycles even if it is not subject to predation. Such a population is modelled by 
the following equation: 

d V / d t  = Vrm~,(v)(1- V ( , _ T ) / K v ) -  PFv (2) 

(3) Option - -  seasonal fluctuation in carrying capacity. I assume that vole 
carrying capacities fluctuate over the year according to a sine function: 

Kv = ~'v + Kamp(v)Kv sin(T2• - FaSK(v) ) (3) 

Alternative prey model  
(1) Version I - model based on the logistic equation. This submodel  

corresponds to the one used for the vole population: 

d A / d  t = A rmax(a) (1 -- A / K  a ) - PF~ (4) 

The vole populat ion with a time-lag was formulated to be able to study an 
intrinsically regulated vole population. The hypothesis to be tested does not 
make any particular assumptions concerning the regulation of the alterna- 
tive prey and it has not been suggested that rabbit  populations cycle on their 
own. Therefore no model based on time-lag is studied for the alternative 
prey. 
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(2) Version H - -  model with constant alternative prey. The proportion of 
produced rabbits that were taken by predators was rather small in the years 
when rabbits were common in the Revinge area (Erlinge et al., 1983). This 
suggests that the model for the alternative prey could be simplified by 
making the dynamics of this prey independent of predation. Such a model is 
obtained by letting the size of this population take a value that is fixed and 
thus has the character of a parameter. This value can be varied to study the 
effects of different levels of alternative prey density. 

(3) Option - -  seasonal variation in carrying capacity. As for the vole 
model, this condition is modelled by a sine function: 

Ka=/~a -{- Kamp(~i)/~a sin(TZ'rr - FaSK(a) ) (5) 

A corresponding option for version II is obtained by letting the given 
population size follow a sine function: 

A = h  q- Aamph sin(T2m - Fasa) (6) 

Predator model 
(1) Version I - -  model without starvation mortality (diffuse alternative prey). 

This model rests on the assumption that mortality does not vary seasonally 
and is independent of feeding rate while reproduction takes place once per 
year and is proportional to the feeding rate. This model is used by Hsu et al. 
(1978) and discussed by Loman (1984). For average and high feeding rates it 
seems reasonable but hardly so when feeding rate is low. Under  such 
circumstances it is likely that further mortality that is directly or indirectly 
due to starvation takes place. This condition is modelled below (version II). 
However, version I seems potentially realistic if it is assumed that the 
predators have access to prey types that are not explicitly modelled. Such 
prey could provide food and prevent starvation even when densities of voles 
and the explicitly modelled alternative prey are low. As we are not interested 
in the dynamics of these further prey types there is no need to model them 
explicitly and their effect on the system is accounted for through this 
predator model. The seasonal nature of predator reproduction must be 
modelled in order to test the second auxiliary hypothesis (seasonality). I 
therefore use a discrete predator model. I assume that all reproduction takes 
place in one specified month of the year. Yearly mortality is divided in 
twelve equal fractions, one for each month. The model is given by the 
following equations: 

P(t+l/12) = P t (  1 - -  db) 1/12 if mod( t l2 ,  12) ¢ t m (7) 

P(t+a/12) = Pt( 1 - -  db)1/12( 1 + b) if mod( t l2 ,  12) = t m (8) 
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db+ds 

db 

F cri, Cm.x f 

Fig. 2. Relation between feeding rate and death rate in the predator model with starvation 
mortality, d, predator death rate; d b and d s, basal and starvation death rate; F, predator  
feeding rate; F~n t and Fma x, critical and maximum feeding rate. 

Birth rate, number of offspring per adult animal, is proportional to feeding 
rate: 

b =  FF-~bmax (9) 
max 

(2) Version H - -  model with starvation mortality. It is assumed that further 
mortality (starvation mortality) is added to the basal mortality when feeding 
rate decreases below some critical value. This mortality increases with 
decreasing feeding rate (Fig. 2). The equations for this version are similar to 
those for the previous one with one exception: the parameter d b is replaced 
by the variable d, the value of which is given by the following equations: 

d = d b if F >~ F~n t (10) 

dsF 
d = d b  + ds F~nt if F < Fcn t (11) 

This modification of version I was suggested by Loman (1984). 
(3) Version I I I  - -  model with constant predator population. This model 

mimics the characteristics of a population of domestic cats. The density of 
this predator is fixed by factors external to the system. The feeding rate of 
this population is represented by its consumption of prey in the system; 
voles and alternative prey. The amount  of food external to the system that is 
used (e.g. canned cat food) does not concern us and is not modelled. There 
is no influence from the modelled feeding rate on the density of this 
predator. This model is obtained by simply letting predator density take the 
character of a parameter. 

(4) Option--intraspecific population regulation. It is reasonable to assume 
that the growth of a predator population is not only affected by the 
individuals' feeding rates but also by the population's current density. In a 



273 

dense population one expects a larger proportion of energy intake to be used 
for social interactions than in a more sparse one. An example of a mecha- 
nism with this effect is territoriality. This phenomenon can be modelled by 
modifying the equations that describe birth rate (equation 9) (Loman, 1985). 
With this option, birth rate is affected both by feeding rate and by 
population density: 

b = F---~ 1 ~  

If P = 0, this equation is identical to equation (9) and population growth is 
only affected by feeding rate. If P = Ki, the equation can be written as 
b = (F/Fm~, , ) (1 / (1 -  d ) -  1) and thus Pt,+t) = P, etc. This means that the 
population is constant if and only if F = Fma ~. The population decreases if 
feeding rate is less. The population will settle at an equilibrium if feeding 
rate is constant. This equilibrium can be computed from the fact that 
(1 + b)(1 - d) = 1 at equilibrium and equation (12). It is (after rearranging): 

F 
d - b m ~ ( 1 - d  ) 

P -~ Ki Fmax Fmax (13) 
F d - b m a ~ ( 1 - d  ) 

Predation process model 
(1) Version I - -  hunting in one habitat. Hunting is assumed to take place 

in one habitat where both prey types are randomly mixed. The model is 
based on the idea that each prey species has a certain vulnerability with 
respect to the predator. This is the probability that a predator individual 
succeeds in capturing one prey individual during one time unit. This is 
equivalent to the proportion of all prey specimens (or all prey biomass) that 
is captured in one time unit by a given predator individual. I assume that the 
predator exhibits a functional response to increasing prey densities that 
conforms to Hollings' type II, i.e. feeding rate increases asymptotically 
towards a maximum value as prey density increases (Holling, 1965). In 
version I, I produce this mechanism by assuming that the proportion of time 
that is used for hunting decreases with increasing hunting success (prey 
captured per time actually hunting). The model is given by the following 
equations: 

F = Fh H (14) 

Fma  
/ 4  = ( 1 5 )  

rma  
Fh + - -  

Hmax 
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Hma x - 
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F max 

Frnax 
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Hm-ax2 

, 

i 
Fmax Fh 
Hmax 

Fmax V 

Hma x Vul B 

Fig. 3. (A) Relation between netto feeding rate (Fh) and the proportion of all time that is 
used for hunting (H) (equation 15). 
(B) The relation between vole density and feeding rate that is defined by the equations 
(14)-(16). After rearrangeing, this relation is given by (32) which is shown on the graph. H 
and Hmax, hunting effort and maximum hunting effort (both measured as hunting hours per 
24 h); F, Fh and Fm~, predator feeding rate (prey per h), netto feeding rate (prey per h 
actually feeding) and maximum feeding rate; Vul; prey vulnerability (proportion of prey in 
one unit area taken by one predator individual and time unit). 

The second equat ion states that  when  hun t ing  success is low (Fh  small) so is 
H close to Hm~ ,, i.e. the predator  uses the m a x i m u m  possible p ropor t ion  of  
its t ime for hunting.  Note  that  Hm~ x is no t  I bu t  a value less than  1 tha t  is 
characteristic of the predator ,  1 - Hm~, represents the t ime that  necessari ly 
must  be used for resting, body  care, etc. Equa t ion  (15) also states tha t  when  
hunt ing  success (Fh) is high so is H F m a J F h  (as Fmax/Hma x in the denomina -  
tor of equat ion (15) can be neglected compared  to Fh) and  thus ( f rom 
equat ion 14) F - -Fma  ~ (Fig. 3). 

Hun t ing  success is directly propor t ional  to the densi ty  and  vulnerabi l i ty  
of  the prey: 

F h  = V Vul v + A Vul a (16) 

(2) Option 1 - -  seasonal fluctuation in prey vulnerability. Vulnerabi l i ty  is 
considered a variable that  follows a sine funct ion:  

Vul v = V-~v + VulvVul ~mp(v) sin( T2~ - FaS,~l(v) ) (17) 

Vul a = VUla + Vula v u l  amp(a) sin( T2,rr - Fas  vul(a)) (18) 
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(3) Option 2 - -  prey switching. Switching does in this context mean that 
the vulnerability of the two prey species depend on their relative abundance. 
The model is given by the following equations: 

Vulv = av(1 + e )  (19) 

gula  = aa(1 - -e)  (20) 

1 -- Swpb V -  A 
Swpb 

e = Swpb (21) 
1 - Swpb V + A 

Swpb 

The parameters and variables in these equations have no clear interpreta- 
tions. A given combination of Swpa, Swpb, and the ratio a a / a  v does, 
however, give a characteristic switching graph that, by trial and error, can be 
fitted to field data points in aplot of relative prey densities in nature to 
relative prey number in predator food. Roughly speaking, the ratio a a /a  v 
represents the convexity of the switching graph, Swpa represents the degree 
of switching, and Swpb represents the inflection point, i.e. the prey ratio at 
which the predator turns from preference for one prey to the other (Fig. 4). 

(4) Version H - -  hunting in two habitats. It is assumed that the two prey 
species, voles and alternative prey, live in separate habitats and that the 
predator spends part of its hunting time in either habitat. Total hunting time 
is assumed to be fixed and the functional response is modelled by assuming 
that the hunting success, and thus feeding rate, depends on prey abundance 
in each habitat: 

V 
Hv V + A (22) 

A 
H a =  V-q- A (23) 

H = Ha + H v (24) 

Feeding rate depends on hunting time and hunting success. The latter 
increases, as in version I, asymptotically towards a maximum as prey density 
increases: 

rmaxV (25) 
Fv = HvFrv + V 

Frn~xA 
F a = H a F r , +  A 

It should be noted that most values of the parameters Fr~ 
switching (Fig. 5), also without the special switch option described below. 

(26) 

and Frv lead to 
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o15 11o Pr 

Fig.  4. Examples  o f  p rey  swi tch func t ions  tha t  show the  in f luence  of  d i f fe ren t  p a r a m e t e r  
values.  Pr  = II/(II+ A);  Sw = F h v / ( F h  v + Fha ) .  
(A) a v = a a, Swpb  = 0.5: 1, Swpa  = - 1 . 0 ;  2, Swpa  = - 0 . 5 ;  3, Swpa  = 0.0; 4, Swpa  = 1.0; 5, 
Swpa  = 2.0. 
(B) a v = aa ,  Swpb  = 0.2: 1, Swpa  = - 1.0; 2, Swpa  = - 0 . 5 ;  3, Swpa  = 0.0; 4, Swpa  = 0.5; 5, 
Swpa  = 1.0. 
(C) a v = 2 a a :  1, S w p a = 0 . 0 ,  S w p b = 0 . 5 ;  2, S w p a = l . 0 ,  S w p b = 0 . 5 ;  3, S w p a = l . 0 ,  S w p b  

= 0 . 2 .  
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0 5 ~ "''j'''tjtTjjj 

015 110 Pr 
Fig. 5. Demonstrat ion of the predation switch effect obtained by using different parameter 
values in the equations for functional response. 1, F rv=17 .5 ,  F ra=17 .5 ;  2, F rv=17 .5 ,  
Fr  a = 35.0; 3, Frv = 17.5, Fr  a = 500.0. 

The parameter Fr can be considered an inverse measure of predator  ef- 
ficiency because in feeding models where feeding rate depends on search, 
pursuit, and handling time, a short search time corresponds to a low 
Fr-value. Also a predator population with a low Fr-value can persist on a 
less-dense prey population than can one with a higher Fr-value (Tanner, 
1975). 

(5) Option 1 - -  prey refugia. Refugia means that all prey below a certain 
prey density are unavailable for predation. Prey above this density are 
subject to predation according to a relation that is comparable to that one 
described for the basic model. The model is given by the following equa- 
tions: 

F v = 0 if V ~< Ref v (27) 

F m a x ( V -  Refv) 
F~ = H v Frrv + V - Ref v if V > Ref v (28) 

Comparable equations give the feeding rate on alternative prey (Fa). This 
model can be considered an extreme case of habitat  heterogeneity (with 
respect to prey vulnerability within a subhabitat). 

(6) Option 2 - -  seasonal fluctuations in functional response. The variable Fr 
in the equation for functional response (equations 24 and 25) is considered a 
variable that follows a sine function: 

Fry = F--rv + Framp(v) F--rv sin(T2~r - Fasfr(v)) (29) 

Fr a is given by a similar equation. 
(7) Option 3 - -  habitat switching. The basic model of version II does not  

take relative prey density into account. Usually a predator  should prefer 
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hunting in a habitat with a high prey density. This can be accounted for by 
extending the model with a switch function that has appropriately fitted 
parameters. Switching is in this section represented by the choice between 
the two hunting habitats. The equation is purely descriptive and contains no 
assumption concerning the processes leading to switching: 

Hv = ( p r S w h a ) / ( S w h b ( s w h a - a ) )  if Pr ~< Swhb (30) 

H v -- 1 - (1 - pr)Swha/(1 -- Swhb) (swha-1) if Pr > Swhb (31) 

Swha represents the degree of switching; a strong preference for the habitat 
with the more abundant prey type is modelled by a high value of Swha. 
Neutral switching, where equations (29) and (30) become identical to equa- 
tions (22) and (23) of the basic model, is obtained for Swha-- 1. It is also 
possible to model negative switching. This means that the predator spends 
more time in the habitat of the less-common prey than is expected from the 
relative abundance of this prey. A predator that spends the same time in 
both habitats, regardless of prey abundances, represents an extreme case of 
negative switching. Negative switching is modelled by values of Swha 
between 0 and 1. Swhb represents the relative prey density where the 
predator changes its preference from one prey to another (the inflection 
point). This parameter makes it possible to account for the predator's 
evaluation of the relative value of the prey types. E.g., if individual weight of 
the two prey types differ, the value of Swhb is affected by whether prey 
abundance is measured in biomass or individuals. 

DETERMINING THE PARAMETER VALUES 

In this section I determine parameter values that are used in simulations 
of the models (Table 2). It is sometimes not entirely clear what measurable 
properties of natural populations that the different parameters represent. 
This section can thus be considered as an example, with comments, of how 
these measurements can be made, given a set of data from a natural 
community. Most values are based on data from studies in the Revinge area. 
Some values are based on averages from several species, others on data from 
one species only. Data for predators refer to the food generalists, mainly cat 
and fox. The use of data from cats requires special comments. Cats in the 
study area are either domestic but free-ranging, or feral. The former hunt 
wild prey, to an extent usually determined by themselves, but have also 
access to food offered by their 'owners'. Their number is mainly determined 
by humans and virtually independent of prey density. The feral cats, mainly 
males, live completely on food captured by themselves. Their number is 
affected by prey densities. Two of the predator models (versions I and II) 
are intended to model wild populations. Data for feral cats and in some 
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TABLE 2 

Parameter values used when simulating the models. Values in parenthesis are used in 
simulations of the submodel for a constant predator population 

Section Parameter Value 

Carrying K v 
capacities h'v 

gamp(v) 
Fas K(v) 
Ka 
Ka 

Kamp(a) 
FaSK(a) 
A 
Y 

A amp 
Fas a 

Population rma~(v) 
growth  rmax(a) 

bmax 
db 
ds 
Fc,.,t 

Time lag t m 
T 

Predator Fma x 
Ki 

One habitat Vul v 
Vul a 
Ht max 

av 
Swpa 
Swpb 

Two habitats Frv 
Frrv 
Refv 
Fry 
Wramp(v) 
Was fr(v) 
Fr a 
Frr a 
Ref a 

Framp(a) 
Fas fr(a) 
Swha 
Swhb 

150 kg km -2 
225 kg km-  2 
0.85 
2.618 (Kv peaks 1 June) 
1600 kg km -2 

2500 kg km-z  
0.80 
3.403 (K a peaks 15 July) 
1075 kg km 2 (for other values, see Fig. 19) 
1075 kg km -2 
0.35 
4.45 (A peaks 15 September) 
3.9 
2.3 
2.8 
0.17 
0.83 
0.5 Fma x 
5 
0.45 (in models with constant K v) 
0.15 (in models with fluctuating Kv) 
1.0 kg day-1 
2.53 ind km -2 
0.15 day -1 km -2 
0.0040 day-  1 km-  2 
0.75 
0.15 day -1 km -2 
1.0 (0.0) 
0.2 
17.5kgkm 2 (25kgkm 2) 
8.8 kg km -2 (12.5 kg km -2) 
10.0 kg km -2 (10.0 kg km -2) 
20.0 kg km -2 (30.0 kg km -2) 
0.38 (0.00) 
3.40 (Fr a peaks 15 July) 
500 kg km 2 (600 kg km-2)  
500 kg km -2 (600 kg km -z)  
0 kg km-2 
600 kg km -2 (1450 kg km -2) 
0.50 (0.76) 
5.76 (Fr a peaks 1 December) 
9.0 (0.1) 
0.05 (0.05) 
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instances for domestic cats are used to determine parameter values in these 
versions. Data for domestic cats are used to give data on the proportion of 
hunting time spent in either habitat and on the proportion of voles and 
rabbits in wild prey. Data on total hunting time and total food intake for 
domestic cats is not used. However, the model for a constant predator 
population (version III) is specifically intended to model a population like 
that of domestic cats. Where relevant, I have used data from the domestic 
cat population for this model. 

Prey densities 
Determination of parameter values require, in several instances, data on 

prey densities in the Revinge area at different times. These densities were 
determined on basis of the following data (Table 3): (a) Density indices 
(small quadrat method) in spring and autumn for field voles in ungrazed 
habitat on peat soil (Hansson and Larsson, 1980, p. 9; Nilsson, 1981, p. 90, 
Hansson, in litt.). These indices were available for all years of the study and 
gave information on yearly fluctuation in overall density. (b) Density values 
(removal trappings in 1-ha areas) in spring and autumn for ungrazed fields 
on peat soil and on mineral soil (Erlinge et al., 1983). These values were not 
available for all years and were made in different plots in different years. 

1 1 
A 

B 

1 

1.1 1. IV 1.VII 1. X 1.1 1. IV 1'.VII 

Fig. 6. Assumed patterns of population fluctuations for voles (A) and rabbits (B). The arrows 
indicate when actual density estimates were made. The rest of the graph is based on 
interpolation. 
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They were used to calibrate the index values to give information on absolute 
densities. (c) Data on yearly pattern of reproduction and predation (Erlinge 
et al., 1983; Fig. 6a). These made it possible to interpolate densities between 
sampling occasions. 

Estimates of rabbit densities were based on night counts in sample plots 
(Liberg, 1981, p. 33). These were corrected for the fraction of rabbits 
invisible in dense (G. Jansson, University of Lund, personal communication, 
1976) to give absolute densities. The pattern of density fluctuations between 
sampling occasions was obtained from information on rabbit breeding in the 
Revinge area (Andersson et al., 1979; Fig. 6b). 

Carrying capacities 

Vole population 
If a population is constant over time and not subject to predation I 

consider its density a measure of the carrying capacity in that particular 
habitat. These conditions are of course difficult to find. The Revinge vole 
population itself is ruled out as it is under heavy predation. Boonstra (1977) 
has described a population of the vole Microtus townsendii that exhibits 
some features suggesting it is at its carrying capacity. The population 
fluctuated seasonally but there were no substantial between-year variations. 
This is not very impressive for a study lasting only 2 years; however, most 
observed Microtus populations fluctuate even over such a short time. 
Furthermore, even compared to the most densely populated habitat in the 
Revinge area, Boonstra measured high densities. The habitat studied by him 
was called 'grassland'. Although further details are not available to me I 'd 
suggest that the ungrazed fields on peat soil in the Revinge area that carry a 
very luxuriant herb vegetation are more productive from a vole point  of 
view. The fact that the M. townsendii population stayed at such a high level 
for 2 years strongly suggests that it was not overshooting a carrying capacity 
but, possibly, close to it. 

Spring and autumn densities of M. townsendii (45 g ind -1) were 5000 ind 
km -2 (225 kg km -2) and 22000 ind km -2 (990 kg km-2) ,  respectively. 
Mean value for the whole year is assumed to be the mean of those two 
values. I assume that the carrying capacity for field voles (30 g ind -1) in 
fields on peat soil in the Revinge area (4 km 2) was twice that density; 1200 
kg km -2. The carrying capacity in ungrazed fields on mineral soil (4 km 2) is 
assumed to be that value divided by 3.3 (Table 3); 360 kg km -2. This gives 
an average value for the whole Revinge area (40 km 2) of 156 kg km -2. 

For the basic model I estimated carrying capacity with the mean density 
over the year. For the optional model with seasonally fluctuating carrying 
capacity I performed test simulations of the model to determine which 
values of amplitude, mean carrying capacity, and the phase parameter that 
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2 0 0  

kg / krn 2 

:30(10 

15130 

1 2 Years 

Fig. 7. Assumed pattern of seasonal fluctuation in carrying capacity and the result of 
simulating densities (the graphs with smaller amplitude): (A) voles; (B) alternative prey. 

produced the observed density fluctuations (Fig. 7a). For the phase parame- 
ter of this optional model it was required that it should make the population 
peak in the beginning of September (Fig. 6a). 

Rabbit population 
The rabbit population in the Revinge area increased until the winter of 

1976/77. During that winter it decreased drastically. This was not due to 
long-term overgrazing but to an unusually severe winter with a thick and 
long-lasting snow cover. I do not consider this decline a result of overshoot- 
ing the carrying capacity. However, as predation was rather light (Erlinge et 
al., 1983) and there was some evidence of overgrazing, I suggest that the 
rabbit population was coming close to its carrying capacity. I assume that 
this is 150% of the highest density measured before the decline. To de- 
termine the parameters in the model for a seasonally fluctuating carrying 
capacity I note that the seasonal fluctuations had an amplitude of 35% both 
when the rabbit population was very dense and later, in 1979, when it had 
the lowest density measured. I therefore assume that this amplitude applies 
to a rabbit population at its (seasonally fluctuating) carrying capacity too. 
The parameter values for mean, amplitude, and phase of this model was, as 
for the vole population, determined by means of test simulations of the 
model system until a fitting set of parameter values was found (Figs. 6b and 
7b). 

Population growth 

Voles 
The intrinsic rate of population growth (rma,) is computed from the 

equation e r~"~ = ~, where X is the number of surviving female offspring to a 
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female after 1 year. It is assumed that predation and intraspecific competi- 
tion can be disregarded. The data used are from a cyclic population of 
Microtus agrestis in southern Finland (Myllym~iki, 1977). As this parameter 
refers to an intrinsic property of a vole population there should be no 
objection to using data from a population outside the Revinge area. In fact, 
the hypothesis under test partly rests on the assumption that there are no 
innate differences with respect to the intrinsic rate of increase between cyclic 
and non-cyclic populations. Had there been, this could have been a suffi- 
cient explanation of the observed differences in population dynamics. An 
advantage by using a cyclic population is that the realised rate of increase 
during the increase phase should be close to the intrinsic (maximum) rate of 
increase. In this phase there is relatively little intraspecific competition and 
predation is light. For the parameter determination I sum all daughters born 
to an overwintered female during her second summer (GGR 0 sensu Myl- 
lym~iki) and all her granddaughters born during this summer. I assume that 
all mortality is due either to predation or (directly or indirectly) due to 
intraspecific competition and thus can be disregarded when determining 
rm~. I base the computation on the number of embryos per female during 
different months (Myllym~iki, 1977, Fig. 13), a 5% prenatal mortality (Myl- 
lym~iki, 1977, p. 485), and 20% density-independent nestling mortality 
(Myllym~iki, 1977, p. 473). During two peak years these estimates yielded 
values of 3.1 and 3.6 and during an increase year a value of 3.9. The latter 
value was used for rma,,. 

Rabbits 
The computation of ~ and rma ~ for the rabbit population is based on a 

total production of 10 daughters per female and year that has been mea- 
sured for the Revinge area (G. Jansson, University of Lund, personal 
communication, 1976). All mortality is disregarded as I assume that this is 
light in the absence of predation and intraspecific competition. A common 
cause of death is myxomatosis but this is only important in dense popula- 
tions. 

Predators 
The predator models have a different structure than the prey species 

models. Population growth in the predator models is determined explicitly 
by birth and mortality rates which, in turn, are determined by feeding rates. 
Maximum birth rate is represented by the number of daughters per female 
and year when feeding rate is not limiting. The model thus superficially 
assumes that all individuals are equal in this respect. In reality it is more 
likely that a population is heterogeneous, and that in a year with a low mean 
feeding rate some individuals have a feeding rate that is close to maximum 
while that of others is very low. The former reproduce close to maximum 
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Fig. 8. Pattern of vole fluctuations obtained when simulating a system that only consists of  a 
vole population. Different values for the lag parameter ( T )  are used. The x-axis is scaled in 
years. 
(A) Constant carrying capacity: 1, T = 0.3; 2, T = 0.4; 3, T = 0.45; 4, T = 0.5; 5, T = 0.6. 
(B) Seasonally fluctuating carrying capacity: 1, T = 0.1; 2, T = 0.15; 3, T = 0.2. 
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rate while the latter do not reproduce at all. However, the model may still 
give realistic predictions if mean reproductive rate is that stated by it. This 
heterogeneity suggests a way to determine maximum birth rate without 
having access to a population where one knows that all individuals are 
feeding at maximum rate. I compute mean litter size for all females that 
have successfully reproduced. This is done for all years when data are 
available (1975-1978) 'and the best year for each species is chosen as 
representative of the maximum birth rate. These values are 5.0 (fox), 7.5 
(cat), and 4.0 (buzzard) (T. von Schantz, O. Liberg and M. Sylv6n, personal 
communication, 1980). The mean number of daughters was thus 2.8 and this 
value is used for bma x- 

Basic mortality represents mortality that is independent of feeding rate. I 
assume that the mortality of older individuals, from their second year and 
on, is a good estimate of this mortality. These mortality rates are 0.15 (fox), 
0.25 (cat), and 0.10 (buzzard) (T. yon Schantz, O. Liberg and M. Sylv6n, 
personal communication, 1980). The mean value, 0.17, is used for db. I 
assume that mortality is 1.0 when feeding rate is zero. This means that 
starvation mortality, the maximum extra mortality caused by starvation, is 
0.83. I assume that starvation begins to affect mortality when feeding rate is 
50% of Fma x. This is motivated by the fact that the daily food requirement of 
cats is 50% of the maximum value measured (see below). 

The predators are assumed to breed once a year. As all individuals are 
assumed to feed at adult rate from 'birth'  on I take the time of birth as 
half-way between the time of actual birth and the time when adult feeding 
rate is reached. Information from the Revinge area (Liberg, 1981, p. 73; Von 
Schantz, 1981a, p. 53; Sylvan, 1982, pp. 36 and 60) suggest that 1 June is a 
good estimate of this. 

Time-lag in vole intraspecific regulation 

This time-lag cannot be measured directly, especially as it is not known 
precisely what it represents. What is required from this submodel is, how- 
ever, simply that it should behave in a predescribed way, i.e. to cycle. I 
therefore carried out test simulations of the vole population model alone 
with different values for the lag parameter. Only in a rather narrow interval 
is the population predicted to cycle without being periodically exterminated. 
The parameter values are chosen from this interval (Fig. 8). 

Intraspecifie predator population regulation 

Maximum feeding rate 
This is a scaling factor, the value of which can be chosen arbitrarily for 

the model predator. It does not influence the results of the simulations 
qualitatively. I use the value 1 kg day-1 
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TABLE 4 

Maximum feeding rate and mean densities for generalist predators in the Revinge area. The 
density is measured just before the breeding time. The model predator has a Fmax-value of 1.0 

Fma ~ Mean density D : o (ind kin-2) D : o, measured 
1975-1978 (ind) in model pre- 

dator units 

Fox 0.9 35.3 0.88 1.0 
Cat (all) 0.5 67 1.68 0.84 
Polecat 0.35 25 0.63 0.22 
Buzzard 0.30 40 1.0 0.30 
Tawny owl 0.16 31 0.78 0.05 

2.41 

In the next section I determine another parameter value (Ki). To do this I 
need the actual Fma~-value for each of the predators in the Revinge area. The 
best direct measure of Fma~ for any of the Revinge predators is that for the 
cat population. In the winter of 1976/77 there was much snow and a very 
high abundance of rabbits in poor condition that were easy to catch. At this 
time the feeding rate of feral cats was measured to 496 g day -1 (Liberg, 
1981, p. 44). Daily food requirement was 250 g day -a (Liberg, 1981, p. 44). I 
thus assume that Fma ~ for the other predators too is 2.0 times their daily 
food requirement (Table 4, Erlinge et al., 1982). 

Measure of intraspecific regulation 
The optional model for intraspecific predator population regulation as- 

sumes that there is a certain density that cannot be exceeded. The proximal 
mechanism with this effect may be territoriality and other social processes 
that increase in intensity with increasing population density and that have 
the effect of decreasing per-caput reproduction. Different natural popula- 
tions occur at very different densities despite roughly similar feeding rates. 
This is possible if the parameters of the assumed process vary between 
different populations. These parameters are possibly subject to both genetic 
and cultural evolution. The desired parameter Ki can be determined for the 
Revinge area using equation (13) if we assume that the populations under 
consideration are in equilibrium and if density, birth rate and death rates are 
known. I do this using the density of the combined predator populations in 
the Revinge area (Table 4) and the previously determined birth and death 
rates. The coefficients of variation for predator densities in 1975-1978 were 
relatively low (fox--5.9,  cat = 13.1, buzzard = 8.6) (Erlinge et al., 1982), 
supporting the equilibrium claim. 
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Fig. 9. Relation between the prey density and the number of hours that a fox spends hunting 
per 24 h. The regression lines are fitted by eye. The continuous line is an approximation of 
actual data. Females with young (squares) are alternatively represented by two thirds of 
measured values (filled squares), assuming that the rest is due to their status as mothers. The 
broken line is fitted on basis of these values. 

Sw 
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• Fox 

o Cat 

J I 0 
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Pr 
Fig. 10. Relation between the fraction of voles in the prey populations (Pr) and their fraction 
in the prey diet (Sw). Circles represent cats and squares foxes. The three switch functions 
shown are based on the following parameter values: 1, Swpa = 0.0, Swpb = 0.20; 2, Swpa = 1.0, 
Swpb = 0.20; 3, Swpa = 1.5, Swpb = 0.20. Funct ion 1 is considered to give the best fit to the 
cat data and is used when modelling a constant predator while function 2 is considered to 
give the best fit to the fox data and is used in the other predator  models. 
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Parameters in the one-habitat predation process model 

Hunting time 
The  m o d e l  a s sumes  tha t  hun t ing  t ime  takes  its m a x i m u m  va lue  w h e n  

hun t ing  success a p p r o a c h e s  zero. A s s u m i n g  tha t  this occurs  when  p r e y  
dens i ty  is zero, this value can  be  d e t e r m i n e d  b y  ex t r apo l a t i ng  a p lo t  o f  
hun t ing  t ime  vs. p r ey  densities.  Such da t a  are  ava i lab le  f r o m  rad io  t rack ings  
of  foxes (Von Schantz ,  1981a). These  d a t a  are b a s e d  on  i n f o r m a t i o n  on  11 

Vole intake (g) 

Fma x - 

400 

Fmax/2 
200 

A 

Ref = 10 Fry =17.5 2'5 37'.5 
~ _ _ ~ l  kg vole / km 2 

Rabbit intake (g) 

Fmax 

Frr v = 8.8 

B 

J 

I 
Fra= Frra= 500 1 0 0 0  

400 

Fmax/2  . . . .  

200 

Ref a- 0 1500 
kg rabbit / km 2 

Fig. 11. Plots of prey intake at different prey densities. Fm~ x (maximum predator feeding 
rate) is taken from other information and with this constain functional response curves have 
been fitted by eye for the basic model and for the model with prey refugia. The basic model is 
also constrained by the requirement that the line should start in origin. Ref, Frv and Frr v are 
parameter values determined on basis of the obtained graphs: (A) feral cat predation on 
voles; (B) feral cat predation on rabbits; (C) domestic cat predation on voles; (D) domestic 
cat predation on rabbits. 
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Fig. ll. continued. 

different foxes, tracked during 16 different periods. The data confirms the 
assumption that hunting time decreases with increasing prey abundance. 
Extrapolating to zero prey densities gives the desired parameter value (Fig. 
9). 

Vulnerability 
Vulnerability is defined as the proportion of prey biomass living in one 

area unit that one individual predator captures and consumes during 24 h of 
hunting. Data are available for vole vulnerability with respect to fox and cat 
predation and for rabbit vulnerability with respect to fox predation. Foxes 
hunting for rabbits required 5 h to fill their food requirement while the 
corresponding figure when hunting for voles was 7 h (Von Schantz, 1981b, 
p. 64). Based on a fox feeding-rate of 450 g (Erlinge et al., 1982) and rabbit 
and vole densities in April (above) this gives a rabbit vulnerability of 0.0040 
and a vole vulnerability of 0.144. Rescaling to the model predator with a 
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maximum feeding rate of 1.0 (compared to 0.9 for a fox) gives 0.0044 and 
0.16, respectively. Vole vulnerability to cat predation can be determined 
from data on the number of minutes a cat needs to capture a vole in 
different months (Liberg, 1981, p. 62). After rescaling this gives the values 
0.15 (Jan.-April), 0.13 (May-Aug.), and 0.13 (Sept.-Dec.). These values are 
remarkably close to that estimated from fox data. They do not justify the 
consideration of seasonal variation in vulnerability. 

Prey switching 
T h e  p r e y  swi t ch ing  f u n c t i o n  gives the  r e l a t i on  b e t w e e n  the  re la t ive  p r e y  

p o p u l a t i o n  d e n s i t y  ( v o l e / r a b b i t )  a n d  the  re la t ive  a b u n d a n c e  o f  c a p t u r e d  

Vole intake (g) 

Fmax 

4OO 

200 

w so, 

1215 2'5 kg vole / km 2 

Rabbit intake (g) 

Fmax 

400 

2oo s ~ ~  
• ', 

500 

B 

1000 kg rabbit / km 2 

Fig. 12. Plots of prey intake at different prey densities. Functional response curves have been 
fitted by eye for the model with seasonal variation in functional response. Sp, = spring; 
Su, = summer; A, = autumn; W, = winter. The x-intercept of the dashed lines gives, as in 
Fig. 11, the Fr-values: (A) feral cat predation on voles; (B) feral cat predation on rabbits; (C) 
domestic cat predation on voles; (D) domestic cat predation on rabbits. 
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Fig. 12. continued. 

prey. To determine the shape of this function I use the following informa- 
tion: (a) Fox prey during four autumns, 1974-1977. The first two were 
pooled because prey abundances were very similar. (b) Cat prey during 
seven different periods, representing different years and seasons. I compare 
these data points to three different switch functions (Fig. 10). Function 
number  1 (Fig. 10) is considered to give the best fit to the cat data  and is 
used when modelling a constant predator, while function number  2 fits the 
fox data and is used for the other predator models. 

Parameters in the two-habitat hunting process model 

Functional response 
Functional response refers to the relation between prey abundance and 

the feeding rate of an individual predator. I model this relation with a 
function that increases asymptotically towards a maximum value. This shape 
has been termed " type  II functional response" (Holling, 1965). Keith et al. 
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Fig. 13. Seasonal variation in functional response parameters. The parameter values were 
estimated from the plots in Fig. 12. (A) feral cat predation on voles; (B) feral cat predation 
on rabbits; (C) domestic cat predation on voles; (D) domestic cat predation on rabbits. 

(1977) present data that support  the use of this type of function for 
vertebrate predators. The function has one parameter, Fr. I determine this 
by  plotting available data points and fitting the function by  eye (Figs. 
11-13). The parameter value is given by  the prey abundance where the 
function intersects the line F = Fm~/2. This point  is read off from the fitted 
lines. Useful quantitative information is only available for the cat popula-  
tion in the Revinge area. Separate determinations are made for each season, 
for the pooled material, for domestic and feral cats, and for a model  
including refugia and one without. To determine the function from the data  
points I must know Fm~ x. I use the value 496 g for feral cats and 175 g for 
domestic cats (the rest of their food is supplied by  'owners') (Liberg, 1981, p. 
44 (Fig. 6) and p. 43 (Fig. 5), respectively). The feeding values in the data 
plot represent biomass rabbit  or vole consumed per day, if all hunting takes 
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place in one habitat. I compute this from data on total prey intake per day 
(Liberg, 1981, p. 43), times the fraction of the diet made up by rabbits or 
voles (Liberg, 1981, p. 42), divided by the proportion of total hunting time 
spent in rabbit or vole habitat, for which values I use 40% and 60%, 
respectively. This is based on 148 observations of hunting cats before the 
rabbit decrease and 660 after. Out of these 43% and 38% observations, 
respectively, were in the rabbit habitat and in the vole habitat (O. Liberg, 
personal communication, 1980). 

The data usually support the assumption that there is a seasonal variation 
in the value of the functional response parameter (Fig. 13). With respect to 
rabbit hunting, the value is least (and thus hunting efficiency highest) during 
summer. This can be explained by the presence of easily caught juveniles 
during this season. On the contrary, vole-hunting efficiency is highest during 
the winter when vegetation cover is poor. The data for domestic cats do not 
support the recognition of seasonal variation in vole-hunting functional 
response. This is best explained by the decreased overall level of outdoor 
hunting by these cats during winter, as they prefer a warm place indoors 

~ 1 0 0  • 

• ~- 80 Q 
E 

6O 

100 

4O 

2O 

10 20 30 
% vole biomass 

Fig. 14. Relat ion between the percentage vole of total  prey b iomass  and  the p ropor t ion  of 
t ime that  radiotracked foxes spent  in the vole habi ta t .  The  switch funct ion  chosen to 
represent  the data  (Swha = 9, Swhb = 0.05) is also shown. The  inset  shows the comple te  
graph, to 100%. Each data  point  represents  one for tha t  has  been  t racked for 1 to 2 months .  
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E 
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~b 10o 
% vole biomass 

Fig. 15. As Fig. 14 but for cats. The two data points represent pooled data for all cats before 
and after the rabbit decrease, respectively. The switch function shown is based on the 
parameter values Swha = 0.1 and Swhb = 0.80. 

(pers. observ.). In accordance with this interpretation, seasonal variation in 
rabbit-hunting functional response is even more pronounced for domestic 
than for feral cats. 

Habitat switching 
The habitat-switch function gives the relation between the vole density 

and the proportion of all hunting time that is spent in vole habitat. I have 
data from cat and fox populations available to describe this function. The 
fox observations refer to 10 different foxes that have been radiotracked 
during 13 different periods. Despite the wide scatter in the data points it is 
clear that the most simple model (neutral switching) must be refuted (Fig. 
14). The function that is determined from fox data will be used in versions I 
and II of the predator model. The cat data are summarized as two data 
points, one referring to the situation before the rabbit decrease, one to the 
situation after (Fig. 15). The two points are superficially indistinguishable 
from the fox data (Fig. 14). However, as each of the cat data points is based 
on a large sample it is justified to conclude that the cats exhibit negative 
switching. This is biologically reasonable; as most cats are domestic they are 
not under food stress and much of their hunting may have explorative 
background. The cat data is used to determine parameter values for version 
III of the predator model. 

S I M U L A T I O N S  

Simulation program 

The simulations were carried out at the Lund University Computer 
Center using the program SIMNON (Elmqvist, 1977). The subsystem de- 
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One-species models Two-species models 
of systems without 
diffuse alternative 
prey 

Two-species models 
of systems with dif- 
fuse alternative prey 

Three-species mod- 
els 

Either of two vole 
population models 
(below) 

A vole population 
without time-lag 
OR 
a vole population 
with time-lag 

Either of two one 
species models 
(column 1) PLUS 
either of three 
predator models 
with 
starvation mortality 
(below) 1 

A predator popula- 
tion without intra- 
specific population 
regulation 
OR 
a predator popula- 
tion with intra- 
specific population 
regulation 
OR 
a constant predator 
population 

Either of two one 
species models 
(column 1) PLUS 
either of two 
predator models 
without 
starvation mortality 
(below) 1 

A predator popula- 
tion without intra- 
specific population 
regulation 
OR 
a predator popula- 
tion with intra- 
specific population 
regulation 5 

Either of six (2 × 3) 
models of a two 
species system with 
starvation mortality 
(from column 2) 
PLUS either of two 
models of an alter- 
native prey popula- 
tion (below) 2,3 

A model of an 
alternative prey 
population that 
grows logistically 
OR 
a model of a 
constant alternative 
prey population 4 

1 The different two-species models were simulated with each of the following three predation 
process models: (1) Hunting in one habitat. (2) D : o with prey refugia. (3) D : o with seasonal 
variation in hunting efficiency. The model for seasonal variation in prey vulnerability was not 
used as data did not support the relevance of this option. 
z The different three species models were simulated with each of the following seven 
predation process models: (1) Hunting in one habitat. (2) D : o  with prey switching. (3) 
Hunting in two habitats. (4) D : o with habitat switching. (5) D : o with prey refugia. (6) D : o 
with habitat switching and prey refugia. (7) D : o with seasonal variation in hunting efficiency. 
3 The full set of simulations is carried out for the case where neither voles nor alternative prey 
have a seasonally varying carrying capacity. This option is used for both prey types 
simultaneously in a limited series of simulations. 
4 If a model of a predator population without intraspecific regulation is used it is obviously 
irrelevant to use a constant alternative prey. The predator population would grow without 
limit in such a model. 
5 The distinction between predators with and without diffuse alternative prey has no meaning 
if the predator population is constant. 
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scriptions are stored on data files. Commands issued from a terminal make 
it possible to combine different subsystems into a complete system, choose 
parameter values, carry out the simulations, and have the corresponding 
graph drawn on a graphic terminal. The results are permanently recorded by 
means of a plotter. 

Simulated systems 

Logically possible and meaningful combinations of subsystems have been 
simulated (Table 5). Simulating the two-habitat hunting model with preda- 
tors and only one prey (voles) sounds like a contradiction. This model, 
which was made in order to make the inclusion of an alternative switching 
process possible, uses other parameter values than does the one-habitat 
hunting model. However, both models are meaningful in the one-prey case, 
which is a special case of them. For this case both models use essentially the 
same equation, after rearranging equations (14)-(16) and (22), (23) and (25), 
respectively: 

FmaxV (32) 
rv= rmax 

+ V  
Vulv Hmax 

rmaxV (33) 
Fv= Fry+  V 

There is an exact correspondence if one assumes that  Fry = 
Fm~x/(Vul v Hmax). Actually, the two-parameter value determination ap- 
proaches yield somewhat different values, F r v =  17.5 kg km -2 and 
Fmax/ (Vul  H m a x ) =  8.9 kg km -2. For comparison with the two predation 
process models in the three-species case I have simulated both models also 

TABLE 6 

Modified parameter values used for simulations of the models. Values in parenthesis are used 
in simulations of the submodel for a constant predator population 

Vul v 0.03 day-  1 
a v 0.03 day-  1 
Swpb 0.6 
Fr v 52.5 kg km -2 (75 kg krn -2) 
Frr v 26.3 kg km -2 (37.5 kg km -2) 
Ref v 30.0 kg km -2 (45.0 kg km -2) 
Frv 60.0 kg km -2 (90.0 kg km -2) 
Swhb 0.15 
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VOLE POPULATION WITHOUT TIME LAG AND WITHOUT SEASONALITY 

TERRITORIAL PREDATOR POPULATION 

MODIFIED PARAMETER VALUES 
PREDATOR POPULA[[O~ WIIH DIFFU'~E PREDATOR POPULATION WITH EOG[STIEOLLY ppEDAFt] P RUI'ULAIIIIR ~"IIH CDRqfRFJr 

PREDATOR POPULRTION ALONE 
WITH VOLE POPULA]ION ALTERh'ATIVE PPEY GROW G RLTEP A [VE PPEY AITLRNAfIVI I'R~Y 

TFRPITnPIAL PPEDArr~ TERRITORIAL PREDAFOR TFRRIIFIRIAt R'D PAl{;!: 

ii: :il!i:i 

Fig. 16. Plots of simulations of the described systems with territorial predators, modified 
parameter values and a vole population without intrinsic time lag. The arrows point at the 
vole population graphs. 
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VOLE POPULATION WITH TIME LAG AND WITHOUT SEASONALITY 

TERRITORIAL PREDATOR POPULATION 

MODIFIED PARAMETER VALUES 

PPEDATOR POPULATION ALONE WITH PREDATOR POPULATION WITH DIFFUSE PREDATOR POPULATION WITH LOGISTICALLY P elb;,''l~ P!,PIILArr)R With i iN 

VOLE POPULATION ALTERN#TIVE PREY 

o -  

GROWING ALTERNATIVE PREY ~ H PNIV 'VL -,P~. 

0 , , ,  

- ~  n I II 
,,I i I 

Fig. 17. As Fig. 16 but for systems with a vole population with intrinsic time-lag. 
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D 

Fig. 18. Analysing the effect of seasonal variation in vole and alternative prey carrying 
capacity. The left colunm gives simulations of systems with and the right columns systems 
without seasonal varying carrying capacity. A and B are systems with a vole population 
without time lag, a predator without intraspecific regulation and an alternative prey with 
logistic dynamics. C and D are corresponding systems but with a vole population with an 
intrinsic time lag. A and C are based on the basic two habitat models and B and D includes 
the option 'seasonally fluctuating functional response'. 
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in the one-prey case. Despite the difference in parameter values the results 
are essentially identical for almost all cases (Table 6, Figs. 16 and 17). 

The effect of a seasonally varying carrying capacity is studied with a 
limited set of simulations only (Fig. 18). The different models have been 
simulated with two sets of parameter values. One is based directly on 
measured data as described above ('Revinge parameter values') (Table 2). 
However, for most models it turns out that the two-species systems are not 
feasable with these values; the vole population is quickly eliminated. The 
central question in this study, whether alternative prey can stabilize vole 
cycles, becomes meaningless. Of course it is possible that a two-species 
system, with voles and the Revinge predator community, is unable to persist. 
It does, however, seem more likely that the efficiency of the predators has 
been exaggerated in my parameter value determinations. This would be the 
case if it were based on underestimated vole-density values. Erlinge et al. 
(1983) present some evidence that this is so and I therefore, alternatively, 
assume that vole density is three or five (for the two-habitat and the 
one-habitat models, respectively) times higher than those presented previ- 
ously (Table 2). Parameter values affected by this modification have been 
recalculated. This gives a second set of parameter values ( ' the modified 
parameter values') (Table 6). These values give realistic oscillations for the 
two-species system. Each model is simulated for a duration of 30 years. The 
simulations were interrupted if the dynamics of the system was obvious after 
a shorter time. This was done to reduce computer costs. 

RESULTS AND DISCUSSION 

Which models are meaningful and realistic? 

My criterion for a realistic three-species model is that between-year 
variation is slight, thus modelling the situation in the Revinge area. Vole 
populations in meaningful two-species models should be cyclic. 

Parameter values 
Simulations of the three-species models give approximately the same 

results with both sets of parameter values. Only for one of the models (a 
constant predator population hunting in one habitat) is there a substantial 
difference (Table 7, row E vs. F, K vs. L). The model predicts the disap- 
pearance of the vole population when the 'Revinge values' are used. 

The two-species models without intraspecific regulation of the vole popu- 
lation predict that the vole population is exterminated if the 'Revinge values' 
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are used (Table 7, rows A, C, and E) but predict a cyclic system (Table 7, 
rows B and D) or a constant system (only for the two habitat model) (Table 
7, row F) if the 'modified values' are used. The two-species models with 
intraspecific vole population regulation predict very regular cycles (Table 7, 
rows G and I) or extinction of the voles (Table 7, row K) if the 'Revinge 
values' are used. More irregular and seemingly more realistic cycles are 
usually predicted if the 'modified values' are used (Table 7, rows H and J). 

I consider the set of 'modified parameter values' the most realistic one. 

Predator model 
The three-species models predict strong fluctuations of the system if it 

contains submodels of a predator population that is neither intraspecifically 
regulated nor constant (Table 7, rows A, B, G, and H). These models are 
unrealistic with respect to the Revinge system. 

The model predicts a constant vole population if the predator population 
is intraspecifically regulated and the vole population is not intrinsically 
cyclic (Table 7, rows C and D). Weak vole cycles with a 2-year period are 
predicted if the vole population is intrinsically cyclic (Table 7, rows I and J). 
Both patterns may be fair approximations of the Revinge system. Thus the 
model can give a qualitatively correct picture of the Revinge system if the 
predator population is intraspecifically regulated. 

The models with a constant predator population predict two-species 
systems that are constant or where the vole population is exterminated 
(Table 7, rows E, F, K, and L). This may be correct, as there is no 
information available on a corresponding natural system (e.g. one with 
domestic cats as sole predators). This shows that voles are less likely to cycle 
when interacting with this kind of predator than with more conventional 
kinds. However, as domestic cats are a minority of the predators in the 
Revinge area and, most likely, in southern Sweden in general, I do not 
consider this as an explanation to the absence of vole cycles. Voles are 
usually able to persist in the system with a constant predator when alterna- 
tive prey is present. This makes sense as the number of predators is given 
and the only effect of alternative prey is to relax predation pressure on voles. 

Alternative prey model 
In three-species models with a territorial or constant predator population 

(Table 7, rows C-F ,  I -L)  and a logistically growing alternative prey, the 
latter is usually predicted to stabilize at a density close to the one measured 
for the rabbit population in the Revinge area in the years before the 
decrease, 1075 kg km -2 (Figs. 16, 17). Modelling the system with an 
alternative prey that is constant thus gives the same predictions and this 
appears to be a realistic simplification. 
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The behaviour of this model together with a nonterritorial predator is not 
considered as that predator model has been shown to be unrealistic for the 
Revinge system. 

If version I of the predator submodel (no starvation mortality) is com- 
bined with a vole submodel this gives a model that I tentatively have 
labelled a system with 'diffuse alternative prey'. However, unless the re- 
fugium option is included, voles are always exterminated in these systems. 
The reason is that the predator population in these models decreases very 
slowly, even at very low vole densities. Furthermore, as feeding on the 
alternative prey is not modelled, the predator always feeds exclusively on 
voles. Actually, an extreme form of negative switching is assumed (Fig. 4A: 
1, 2). This version of the predator submodel is not considered realistic. This 
result constitutes support for my previous claim (Loman, 1984) that this 
model (labeled model I in Loman, 1984) is less realistic than the modifica- 
tion with starvation mortality (labelled model III) or the continuous version 
of that model (model II). 

Predation process model 
The switching options affect different models in conflicting ways. The 

prey-switching option sometimes increases realism in the respect that three- 
species models where the basic models predict extinction of the voles turn to 
such models where the voles persist (Table 7, rows A - D ,  G-K) .  These cases 
include those two that have been considered most important  from the 
previous results (Table 7, rows D and J, Figs. 16 and 17). In some cases the 
option has no qualitative effects (Table 7, rows E and F) and in one case it 
increases cyclicity (Table 7, row L). 

The habitat-switching option usually has no qualitative effect. However, it 
increases cyclicity slightly in one case (Table 7, row J) and decreases it in 
two (Table 7, rows I and K). This is related to the fact that the basic 
two-habitat model (on which the habitat-switching option is applied) con- 
tains elements of switching itself (Fig. 5). 

The introduction of refugia gives rise to drastic changes in the two-species 
models. Very constant systems are predicted. If introduced in the three- 
species models no important effects are obtained from the introduction of 
refugia. 

The introduction of a seasonally varying predation efficiency does not give 
any changes from the predictions made by the basic models. This conclusion 
is reached when studying models both without a seasonally varying carrying 
capacity (Table 7, Figs. 16-17) and models with a seasonally varying 
carrying capacity (Fig. 18). 

The introduction of a seasonally varying carrying capacity does not affect 
the predictions of the model with respect to between-year dynamics. The 
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wi thin-year  dynamic  becomes,  however ,  cons ide rab ly  m o r e  realist ic (Fig. 
18). 

How realistically can the Revinge system be modelled? 
A qual i ta t ively realistic behav iour  was shown b y  a sys tem c o m p o s e d  of  a 

terr i torial  p reda tor ,  a logistically growing (or cons tan t )  a l te rnat ive  p r ey  and  
ei ther  of  the two vole models .  The  one-hab i ta t  vers ion requires  the switching 
op t ion  for  a realistic behaviour .  In  the two-hab i ta t  version,  no  special 
switching op t ion  is required.  The  use of  refugia  and  seasonal i ty  op t ions  was 
tested for  this vers ion and  found  no t  to increase realism. A c o m p a r i s o n  of  
these models '  quant i ta t ive  dens i ty  pred ic t ions  and  densit ies ac tual ly  mea-  
sured in the Revinge  area gives a reasonable  ag reement  (Tab le  8). This  gives 
some conf idence  to the approx ima t ions  m a d e  w h en  de te rmin ing  p a r a m e t e r  
values and  choos ing  func t iona l  re la t ions for  these models .  

TABLE 8 

Predicted equilibrium densities (or mean densities of cyclic populations) for three-species 
models with territorial predators, logistically growing alternative prey and modified parame- 
ter values (column 3 in Figs. 16 and 17). The values that actually were measured in the 
Revinge area were: Predators (all generalist predators added and recalculated to model 
predator (Fm~ x = 1.0 kg day -1) units (Table 5))--2.4 ind. km -2. Rabbits (before the decrease 
in the winter 1976/77 that I consider due to factors external to the system)--1075 kg km -2. 
Voles (yearly mean value (Table 3))--20 kg km -2. The modified parameter values were based 
on assumed vole densities of 60 and 100 kg km -2 (for the two-habitat and one-habitat 
versions respectively) 

Vole model without Vole model with 
time lag time lag 

Predators Rabbits Voles Predators Rabbits Voles 

Vole model 
without time 

lag 

One habitat model 
No options 2.5 

Ditto. Switching 2.5 

Two habitat model. 
No options 2.5 

Ditto. Switching 2.5 

Ditto. Refugia 2.5 

Ditto. Switching 
and refugia 2.5 

Ditto. Seasonality 2.5 

1100 0 2.5 1100 

950 130 2.5 1100 

1150 130 2.5 1200 

1150 150 2.5 1250 

1200 120 2.5 1200 

1150 145 2.5 1250 

1200 125 2.5 1200 

0 

30 

120 

85 

120 

80 

120 
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Can the presence of an alternative prey stabilize vole cycles? 

Yes, if the predator is territorial it is possible to model a system that is 
cyclic with only voles and predators present but stable when an alternative 
prey is present (Figs. 16 and 17). 

The version of the alternative-prey models where this is kept constant can 
be used to give some interesting predictions. If it is correct that vole cycles 
are absent from the Revinge area because of the presence of rabbits one 
would expect cycles to appear after the decrease in rabbit density 1976/77. 
This is especially true as the rabbit density stayed low for several years, even 
decreasing further to a minimum value in 1979 of 135 kg km -2. The top 
density in 1976 was 1075 kg km -2. However, no vole cycles have appeared 
but in light of the present model this field observation does not contradict 
the hypothesis. The model predicts a relatively constant vole population 
both at the top rabbit level (1075 kg km -2) and at the low level measured 
(135 kg km -2) (Fig. 19). However, the effect of alternative prey is, as one 
intuitively assumes, quantitative and not qualitative. A simulation with a 
constant alternative prey level of 25 kg km -2 yielded a cyclic vole popula- 
tion (Fig. 19). 

CONCLUSIONS 

The presence of alternative prey is a possible explanation for the relative 
constancy of the field vole population in the Revinge area. 

A predator population that by factors external to the system is fixed at a 
level similar to that of the domestic cat population may stabilize vole cycles. 

Switching in a broad sense may contribute to the dampening effect of 
alternative prey. 

The presence of seasonal fluctuations in prey carrying capacity and in 
prey vulnerability does not affect the between-year dynamics of the vole 
population. This study does not support the hypothesis that such fluctua- 
tions are important for the dampening effect of alternative prey. 

This study could only demonstrate a dampening effect from an alternative 
prey if the predators are territorial (or have other forms of intraspecific 
regulation). The hypothesis that territoriality increases the probability that 
alternative prey stabilizes vole cycles is thus supported. 

Refugia have a stabilizing effect on all systems, but cyclic two-species 
systems can be stabilized by the addition of alternative prey even if refugia 
are not present. The hypothesis that their presence is important  for the 
stabilizing effect of alternative prey is thus not supported. However, refugia 
and even weaker forms of habitat heterogeneity remain an alternative (to 
alternative prey), independent explanation for regional differences in vole 
population cyclicity. The present study is not a critical test in this respect. 
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