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ABSTRACT 

A system of two noncompeting prey species and one predator is studied, and a 

graphical method to determine the equilibrium densities of the populations is presented. 

The method is used to study the behavior of two different systems: with nonterritorial and 

territorial (self-regulated) predators respectively. It is shown that the introduction of an 

alternative prey reduces the equilibrium density of the first prey if the predator is not 

territorial. This is an example of apparent competition. If the predator is self-regulated, 

then the introduction of an alternative prey may, under some conditions, lead to an 

increased equilibrium density of the first prey population: apparent mutual&m. 

1. INTRODUCTION 

Coexisting species on the same trophic level may affect one another’s 
population densities in several ways. Interference competition refers to the 
situation where individuals of one species directly affect individuals of the 
other species. Interspecific territoriality and interference with each other’s 
foraging behavior are two examples. They are said to exhibit exploitation 
competition if their main effect on each other is through the utilization of 
common resources. The classical theory of competing species states that two 
species cannot coexist unless their resources differ. Much effort has been 
devoted to the problem of limiting similarity, i.e. how similar the resource 
utilization of two coexisting species can be. The introduction of predators in 
such communities leads to another classic problem: Under what cir- 
cumstances can two species coexist thanks to predation? The possibility of 
such a diversity enhancing effect was first suggested by Paine [lo] and called 
the problem of competitive coexistence by Vance [14]. 

However, predation may also affect the coexistence of two species that 
are not directly competing. If the presence of a prey species increases the 
density of a joint predator species, this may have an adverse effect on 
coexisting prey species. This mechanism may lead to competition between 
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species that are not directly competing or using common resources. Holt 
[5, 61 calls this phenomenon apparent competition. He also gives a brief 
history of the subject and describes field studies which may constitute 
examples of the phenomenon. 

The purpose of this paper is to present a graphic method to compute the 
equilibrium densities of two “apparently competing” prey species. The 
method is used to predict circumstances under which a second prey species 
can be introduced into a one-prey, one-predator system and whether this 
introduction will increase or decrease the equilibrium density of the first 
prey species. The scope of the study is limited to systems with populations in 
equilibrium. Systems with limit cycles or exhibiting “chaos” [7] are not 

considered. 

2. MODELS 

2.1. SYMBOLS 

A 

a 
b 

c 

F 
F 

FX 
Fr 

G,G,,Gz 
i 

K, K,, K,, K, 

KP 

k,, k, 
L 
P 

r, rl, r2, r, 

‘P 
T,Tl,Tz 
V 

P 

v,qrv2 

An auxiliary function, related to the combined production 
rate of two or more prey populations. 
Defined as r2/r1. 
Defined as K2 /Kl. 

The consumption rate of a predator population that is in 
equilibrium with its prey. 
The feeding rate of predator individuals. 
The maximum feeding rate of predator individuals. 
The minimum feeding rate of predator individuals. 
A parameter that is related to the shape of the functional 
response curve. 
The production (growth rate) of prey populations. 
The point of intersection between A and C. 
Carrying capacities of the prey populations. 
A parameter that is related to the degree of self-regulation of 
the predator population. 
The point of intersection between A and G, or G,. 
A straight line between i and the origin. 
Predator density. 
The intrinsic growth rate of the prey. 
The intrinsic growth rate of the predator. 
The tangent to G (G, or G,) that runs through the origin. 
Prey (victim) density. 
Prey (victim) density at equilibrium. 
The point of intersection between L and G (G, or G2). 
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2.2. THE DIFFERENTIAL EQUATIONS 

2.2.1. Different Graphs Used. Two different equations describing the 
dynamics of the predator and one equation for the prey dynamics are 
studied. These yield consumption equations and a production equation 
respectively. A production equation gives the gross production of a prey 
population at different densities. This dependence was introduced by 

Armstrong [2]. A consumption equation and the corresponding graph de- 
scribe the relation between prey density and the total consumption of a 
predator population that is in equilibrium with such a prey population. 

2.2.2. Predator Model I. The predator population is assumed to in- 

crease if the prey density is above a particular value. An equation with this 
property is given by Tanner [13]: 

The feeding rate F is here, and in all following models, assumed to depend 
on prey density according to Holling’s [4] type II model: 

F= L&-j7. (2) 

The consumption graph is a vertical line [Figure l(a)]. 

2.2.3. Predator Model II. The second model of predator dynamics 
pictures a predator with self-regulation, e.g. a territorial species where the 
size of the territories depends on the realized feeding rate. The predator 
population never exceeds a density of K;( F,, - Fmi,). If the feeding rate is 
at a certain minimum level or below, the population decreases regardless of 
present density. Its dynamics is given by 

P 
‘- K,.(F-F,,,) 

Assuming that the feeding rate is described by Equation (2), the correspond- 
ing consumption graph is [Figure l(b)] 

-- Fain )( 

2.2.4. Prey Model. In the absence of predators, the prey populations 
are assumed to be resource limited. When predators are present, and 
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FIG. 1. Consumption graphs: (a) The graph defined in Section 2.2.2: 

%u + Fain P=FrF 
rnax - Fain 

(b) The graph defined by Equation (4): 

t 

k 
K/2 k v 

FIG. 2. The production graph: G’(0) = r, G’(K) = - r. 
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assuming that predator feeding rate is given by Equation (2), the prey 
dynamics is described by 

The production graph is given by (Figure 2): 

G=rV- 1-s. 
( 1 

This is a parabola with V-intercepts 0 and K and with a maximum at 

G= rK/4. 

3. A GRAPHICAL SOLUTION OF THE SYSTEM 

3.1. THE TWO-SPECIES SYSTEM 

Intersections between the predator and prey isoclines give equilibrium 
densities for these populations in the two-species system [ll]. However, 
isoclines cannot be used to solve the three-species system. Equilibria are also 
given by the intersection between the production and consumption graphs 
(Figures 1 and 2). On the ordinate the production graph gives the number of 
prey produced at a particular prey density, while the consumption graph 
gives the number of prey consumed by a predator population that is in 
equilibrium with that prey density. The prey population is obviously in 
equilibrium too at the prey density where the two graphs intersect. Below, a 
development of the production graph will be used for a solution of the 
three-species system. 

3.2. THE THREE-SPECIES SYSTEM 

I will now construct an auxiliary graph in the production-consumption- 
graph diagram. This graph can be used to find the equilibrium densities of 
two prey populations that are simultaneously exploited by a predator but do 
not compete directly or for shared resources. This auxiliary graph will, by 
definition, represent the total growth rate of prey in the system, as a function 
of total prey numbers. Prey individuals of both species are assumed to be of 
unit weight, if necessary after adjustment of the K-value. The predator is 
assumed to consume the prey species in proportion to their respective 
densities; thus the relation 

must hold for prey equilibria. This means that there exists a number d such 
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and [from Equation (6)] 

viz 
d.V, = r1v, - K, 

1 

r -d 
Vl = LK 

r1 
1 

and 

d.V,=r2V2--$2, 
2 

v, = 
r, - d 
-K2, 

r2 

(94 

A is a function of the total prey density V. If V is written as a sum of its 
component prey densities, 

v= v, + v,, (IO) 

and if (following the definition above) one requires that A(V) is a prey 
production consumed by a predator in equilibrium with the two prey species 
at densities VI and V, respectively, it is clear that A(V) must be equal to 
total prey production. Thus 

A(K+I/,) =G,(V,)+G,(V;) (11) 

or [from Equations (7) and (8)] 

A(V) =d.(q+V,), 

de A(V) 
v . 

Equations (9), (lo), and (12) give 

A(V) r, - - A(V) 
V 

r2 - - 
v= 

rl 
Kl + 

‘2 
’ K2, 

A(V) = 
rlr2( Kl + K,) V- r1r2V2 

rlK2 -I r2Kl ’ 

(12) 

(13) 

the auxiliary function. 
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3.3. THE MULTISPECIES SYSTEM 

7 

Equation (9) and the corresponding equations for further prey species can 
easily be used to deduce equations corresponding to (13). For a one-preda- 
tor, three-prey system, define 

V= i r(. (14) 
i-l 

The auxiliary function is given by 

A(V) = 
rlr2r3( Kl + K2 + K3) V- rlr2r3V2 

rlr2K3 -I- r,r,K, + r2r,Kl ’ (15) 

3.4. PROPERTIES OF THE AUXILIARY FUNCTION 

3.4.1. The Auxiliary Graph and Analyses of Predator-Prey Systems. 
From the definition of the consumption graph, the production graphs, and 
the auxiliary graphs, one sees how such graphs can be used for a graphical 
“solution” of a one-predator, multiprey system. Draw a consumption graph, 
one production graph for each prey in the system, and their ensuing 
auxiliary graph. Draw a straight line from the intersection between the 
consumption graph and the auxiliary graph to the origin. The x-coordinates 
of the intersections between this line and the production graphs represent 
equilibrium densities of the prey populations. 

3.4.2. Extreme Values and Slopes of A. Equation (13) can be rewritten 
as 

where 

A(V) =r,V[l- V(K)], (16) 

I$ 1 Kl 1 -.-++.- 
KI SK2 ‘1 

(17) 

and 

K,=K,+K,. (18) 

This is the logistic equation, and it follows that 

A(V) =0 for V-O and for V=K,+K, 

and that 

(19) 

r,rz(fG + &I2 
supA= 4( r,K, + r,K,) ’ (20) 
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which is reached for 

KI + 6 
V=2. (21) 

The slope of A(V) at the origin is given by 

r K + r K . (22) 
12 21 

As A is an inverted parabola [Equation (13)], we know that [Equation (19)] 

A’( KI + K,) = - A’(0). (23) 

Defining a = r2/r,, the slope of A at the origin can be written 

A’(0) = 
arf(K,+K2) KI + K2 

rl(K2 + 6) 
=“‘aK,+ K2’ (24) 

Because 

and 

l<a KI + K2 

aK, + K2 < a 
if a>1 

4 + K2 

axaaKI+K2 
xl if a<1 

(254 

(25b) 

and G’(0) = r [from Equation (6)], it is clear that the auxiliary graph runs 
between the two production graphs in the neighborhood of V= 0. 

3.4.3. The Tangent to G, and KI -a Useful Coincidence. The following 
is a useful property in the analysis of conditions permitting coexistence of 
prey species. Consider the tangent to G2 that also passes through the origin. 
From the fact that G’(0) = r it follows that 

T2 = r2V. (26) 

Define b = K,/K,. The production graph (G,), the tangent (T,), and the 
auxiliary graph (A) can then be rewritten 

T2 = ar,V, 

(274 

(27b) 

A= 
ar~K,(l+ b) - ar:V2 

r,K,( a + b) 
(274 
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respectively. Consider the prey density v* = K,(l - a). It is easily verified 

that 

G,(P) =ur,K,(l-a), (2ga) 

T,(P) =ar,K,(l-a), (2gb) 

A(P) =ur,K,(l-a). (28~) 

The three graphs thus have a common intersection, the position of which is 
independent of the ratio between the carrying capacities of the two prey 
populations, b. This point is k, (Figure 3). 

3.4.4. r,, K2, and the Size of A. Consider r1 and KI given, and study 
the influence of different values of rZ and K2 on the A-graph. a and b are 
used as relative measures. 

From Equation (20) we find the height of A as a function of a and b: 

If b is kept constant and a ( = r2/rI) increases from zero to infinity, it is 
cIear from the expression [Equation (29) rewritten] 

(supA) =-&.+(l+b)2 (30) 

that the maximum value of A will increase monotonically from zero to 

(qW4)(1- b>*. 
To study the influence of b ( = K,/K,) when a is kept constant we 

rewrite Equation (29): 

(supA) &&f!+, 

The derivative of Equation (31), 

(supA)‘( b) = 
(l+b)*2(a+l) 

(u+b) ’ 

(31) 

(32) 

is positive for all positive (and thus meaningful) values of a and b. Thus 
sup A increases with increasing b ( K2). 

The width of A is KI + K2 = K,(l+ b) [from Equation (19)]. The width 
of the auxiliary graph is not influenced by a, and it increases monotonically 
with b. 
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FIG. 3. Graphical analysis of the invadability of a system with one nonterritorial 

predator and one prey. The consumption graph (C) and the production graph of the first 

(G,) and the potentially invading prey (G,, with tangent Ta) are shown along with the 

auxiliary graph (A). (a) The line L (from i to the origin) has no positive intersection with 

G,, and the second prey cannot invade. (b) A case with a positive intersection between L 

and G,. c,(O) represents the equilibrium density of $t in the two-species (one predator-one 

prey) system. The prey equilibrium densities in the three-species system are Qt and f2. 
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4. ON THE POSSIBILITY AND EFFECT OF INTRODUCING 
A SECOND PREY POPULATION INTO A TWO-SPECIES 
SYSTEM IN EQUILIBRIUM 

Given a production graph G, and a consumption graph C, we consider 
the different effects that are possible on introducing another prey population 
into this system. The production graph of this new prey population is Gr. 
For one case (Section 4.1) I discuss the specific effects of characteristics of 
the second prey species. For the other case (Section 4.2) I only show which 
qualitatively different cases are possible. 

4.1. A PREDATOR POPLILA TION WITHOUT INTRASPECIFIC REGUL.A TION 

The consumption graph is a vertical line [Figure 2(a)]. For small values of 
r, (i.e., the alternative prey has a low intrinsic rate of increase), the auxiliary 
graph will be low [Equation (30)] and the intersection i between C and A 
will be inside G,. As the slope of the line from i to the origin (L) is greater 
than the slope of the tangent to G, at the origin (T2), it is clear that the 
equilibrium density of the alternative prey population ( pz) is negative and 
this prey species cannot invade [Figure 3(a)]. 

The height of A increases with increasing r, [Equation (13)], and for 
sufficiently large r, the point i will be outside G,. In such cases the slope of 
L is less than that of q. Then the second prey species can invade the 
community [Figure 3(b)]. It is also clear that the equilibrium density of the 
first prey, population will be less after the introduction of a second prey 
species (Vi) than it was before such an invasion (l&,) [Figure 3(b)]. 

An increase in K2 (increasing b) increases both the height and the width 
of the auxiliary graph. Therefore the effect of this parameter of the invading 
properties of the alternative prey is less clear. Depending on the value of a, 
an increase in b may either increase (a > 1) or decrease (a < 1) the slope of 
the auxiliary graph at the origin [Equation (24)] and thus the y-coordinate of 
i and the slope of L. The slope of T, is rz and remains unaffected by 
changes in K2. It thus follows that, depending on other variables, an increase 
in K2 may or may not increase the invading capacity of the alternative prey 
species. 

4.2. A PREDATOR POPULJ TION WITH INTRASPECIFIC REGUU TION 

The consumption graph of a predator population with intraspecific popu- 
lation regulation starts with a relatively steep slope and levels off. If the 
slope is sufficiently steep and the V-intercept sufficiently low [a predator 
with weak regulation that is efficient (survives on low prey densities)], the 
point i may be inside the G,-graph and thus the slope of L steeper than that 
of T2 [Figure 4(a)]. This means that the second prey population cannot 
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(a) 

\ \ \ \ \ \ \ \ \ \ \ \ \ 
^ I 

Vl %o, V 

(b) 

FIG. 4. Graphical analysis of the invadability of a system with one territorial predator 

and one prey. Abbreviations as in Figure 3. (a) A case where the potential second prey 

species cannot invade. (b) A case where the potential second prey species can invade, 

resulting in the reduction of the equilibrium density of the first prey species. (c) A case 

where the potential second prey species can invade, resulting in the increase of the 

equilibrium density of the first prey species. 
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FIG. 4. (Continued) 

invade the system. With other characteristics of the C-graph, the second prey 
may invade the system [Figure 4(b) and (c)l. The density of the first prey 
may, as for a nonterritorial predator, decrease [Figure 4(b)] or increase 
[Figure 4(c)]. 

4.3. PREDATOR CHARACTERISTICS AND PREY-SPECIES DIVERSITY 

The following characteristics of the predator population will push the 
point i to the right and thus give L a slope that is more likely to be less than 
T,. This will facilitate the invasion of a second prey species: 

(1) A low feeding rate at low prey densities [high Fr, Equation (2), Figure 

5(a) and WI. 
(2) Strong intraspecific predator regulation [low Kp, Equation (3), Figure 

5(b)]. 
(3) A low maximum feeding rate of the predator [low Fm,, Equations 

(2a) and (4), Figure 5(a) and (b)]. 

(4) A h&h minimum feeding rate [high Ftin, Equations (2) and (4), 
Figure 5(a) and (b)]. 

Diversity is thus promoted by characteristics that reduce the overall effect 
of predation. 
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A 

FIG. 5. Changes in the parameter values of the C-graph that increase the possibility 

for the alternative prey to invade a two-species system. C represents a condition where V2 

is less likely to invade than do C’ and C”. (a) A nonterritorial predator. High values of Fr 

and F,, , and a low value of F,, , lead to C’. (b) A territorial predator. A low value of Kp 

leads to C’. High values of Fr and Fmin, and a low value of F,,, lead to C”. 

5. DISCUSSION 

5.1. GRAPHICAL METHODS 

Previous graphical analyses of predator-prey interactions have been based 
on, e.g., isoclines [l, 91 or production curves and functional response curves 
[2]. These analyses have usually focused on stability conditions [ll, 2, 121 or 
on conditions affecting the coexistence of prey species [3, 91. In the present 
paper I introduce the consumption graph, which is particularily adapted to 
analyse quantitative effects on the equilibrium densities of multiprey com- 
munities with a shared predator. Similar effects are also discussed qualita- 
tively by Abrams [l]. However, he does not adapt his graphical method for 
the explicit prediction of equilibrium densities; it is used to predict the 
direction of changes. 

5.2. APPARENT COMPETITION AND COOPERATION 

The densities of two prey populations at equilibrium that are preyed upon 
by the same predator are usually less than those of a prey population that is 
the sole prey species in the system. This is also the general conclusion drawn 
by Holt [5], which led him to coin the term apparent competition. The 
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phenomenon has in recent years been discussed again by Holt [6] and by 
Mithen and Lawton [8]. In addition to the mutual negative effect discussed 
by these authors, the analysis above demonstrates that the introduction of an 
alternative prey species may lead to an increase in the density of the first 
prey. Such situations may arise if the predator is self-regulated (e.g. terri- 
torial). Holt [5] mentioned the possibility of such effects if a higher-order 
predator is included in the system. He labeled such situations apparent 
mutualism. Conclusions similar to mine were reached by Abrams [l], partly 
on the basis of results from Noi-Meir [9], by means of another graphical 

method. 
The notion of apparent mutualism thus seems to be theoretically accept- 

able. However, I presently do not know of any field studies that are 
convincing evidence of its existence. The mechanism may have some rele- 
vance for the management of natural populations. If, e.g., one wants to 
increase the size of a population that is limited by predation, introduction of 
an alternative prey will in the short run (“behavioral time”) do this. In the 
long run (“ecological time”), the action is most likely to be successful if the 
predator is territorial. 
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