
 genetical inferiority is severe enough, females may
 benefit from mating multiply under certain rather re-
 strictive circumstances (though these benefits are not
 derived from mechanisms based on the genetical di-
 versification of offspring sensu strictu). However, in
 such situations selection would favour (and very in-
 tensively so) mate quality rather than mate quantity
 (see Bateson 1978, 1980, Bateson et al. 1980, Partridge
 and Halliday 1984, for a discussion of inbreeding conse-
 quences and avoidance).
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 We realize, after having perused the note by Arnqvist
 (1989) that the title of our recent paper (Loman et al.
 1988) was unfortunate.

 We did not discuss genetic heterogeneity in the con-
 ventional sense but operationally defined two genet-
 ically based offspring classes, "good" and "bad". How-
 ever, as each of these may be genetically quite diverse,
 we cannot make any assumptions about total genetic
 heterogeneity. We discussed effects on female fitness
 (defined below) from increasing the offspring diversity
 with respect to these two classes.
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 heterogeneity. We discussed effects on female fitness
 (defined below) from increasing the offspring diversity
 with respect to these two classes.

 The purpose of the model was to demonstrate how
 female fitness is affected by multiple matings. Our defi-
 nition of "fitness" was of course meant to simplify the
 presentation in this particular context. Many other fac-
 tors might also have an impact on total female fitness.
 There might, for example, be costs associated with mat-
 ings, which is one aspect of number of matings that
 might lower fitness. This is evident from the example
 concluding our paper. The fitness of an individual fe-
 male naturally depends on all such contributing factors.

 One point where we disagree with Arnqvist is the
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 "plausibility and universality" of situations where a
 large proportion of males are "bad" (producing un-
 viable offspring). We agree that it seems unlikely to be
 very common. However, we do not know of data or
 theories that convincingly show such a situation to be
 implausible. This is especially true if some males are
 genetically incompatible with respect to certain females.
 Our model shows that such a situation might be impor-
 tant. This subject deserves further study.
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 In conclusion, and with some afterthought, a better
 title would have been the one heading this note.
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 What is the adaptive significance of multicomponent defensive reper-
 toires?

 David L. Pearson, Dept of Zoology, Arizona State Univ., Tempe, AZ 85287, USA
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 It is likely that of the vast majority of prey species each
 exhibits multiple anti-predator characters (Pearson
 1985, Endler 1988). However, most models and theo-
 ries of predator-prey interactions assume, at least im-
 plicitly, that prey have only single anti-predator charac-
 ters. This single character assumption has great poten-
 tial for misleading and invalid results.

 At least five theories predict the presence of multiple
 anti-predator characteristics within a single individual
 prey: 1) Some characters may function in concert to
 minimize predation. For instance, aposematic colora-
 tion and distasteful compounds are frequently associ-
 ated. A complication with this category is that each of
 these characters may not effectively deter predation by
 itself, and if they only or usually function in combina-
 tion, they may technically be considered one character.
 Monarch butterflies (Danaus plexippus L.) use an inter-
 dependent set of characters that include color, gregari-
 ousness and distastefulness for much of their protection
 against avian predators on the wintering grounds (Cal-
 vert et al. 1979). Tiger beetles (Cicindelidae) use body
 size, brightly-colored abdomens exposed in flight, and
 defense chemicals against robber fly predators. The per
 cent deterrence by these characters is greatest for larger
 species with bright orange abdomens and benzaldehyde
 released from their defense glands (Pearson 1985). As
 each of these characters is eliminated from models pre-
 sented to wild robber flies, the deterrent effect is re-
 duced. Some characters such as large body size are
 more important by themselves than other single charac-
 ters, but the greatest protection is derived from a com-
 bination of all three together. Smaller tiger beetle spe-
 cies rely on gregariousness together with orange ab-
 domens and defense compounds (Pearson et al. 1988).

 It is likely that of the vast majority of prey species each
 exhibits multiple anti-predator characters (Pearson
 1985, Endler 1988). However, most models and theo-
 ries of predator-prey interactions assume, at least im-
 plicitly, that prey have only single anti-predator charac-
 ters. This single character assumption has great poten-
 tial for misleading and invalid results.

 At least five theories predict the presence of multiple
 anti-predator characteristics within a single individual
 prey: 1) Some characters may function in concert to
 minimize predation. For instance, aposematic colora-
 tion and distasteful compounds are frequently associ-
 ated. A complication with this category is that each of
 these characters may not effectively deter predation by
 itself, and if they only or usually function in combina-
 tion, they may technically be considered one character.
 Monarch butterflies (Danaus plexippus L.) use an inter-
 dependent set of characters that include color, gregari-
 ousness and distastefulness for much of their protection
 against avian predators on the wintering grounds (Cal-
 vert et al. 1979). Tiger beetles (Cicindelidae) use body
 size, brightly-colored abdomens exposed in flight, and
 defense chemicals against robber fly predators. The per
 cent deterrence by these characters is greatest for larger
 species with bright orange abdomens and benzaldehyde
 released from their defense glands (Pearson 1985). As
 each of these characters is eliminated from models pre-
 sented to wild robber flies, the deterrent effect is re-
 duced. Some characters such as large body size are
 more important by themselves than other single charac-
 ters, but the greatest protection is derived from a com-
 bination of all three together. Smaller tiger beetle spe-
 cies rely on gregariousness together with orange ab-
 domens and defense compounds (Pearson et al. 1988).

 2) Some anti-predator characters may be largely or
 uniquely targeted against each of the distinct foraging
 phases of a predator (Endler 1986). Predator behavior
 can be divided into distinct stages such as search, pur-
 suit, capture and processing (Holling 1966). Anti-preda-
 tor characters like crypsis are primarily effective against
 the searching phase, rapid flight against the pursuit
 phase, chemical defense against the capture phase, and
 hard cuticle against the processing phase. An individual
 prey might have all these characters to adequately pro-
 tect it from a single or different predators through all of
 its foraging phases.

 3) Increasingly potent lines of defense may be used as a
 predator overcomes the initial ones. The primary lines of
 defense function regardless of whether or not the preda-
 tor has been perceived by the prey, and they are likely
 to be energetically cheap (crypsis). The secondary lines
 are initiated by an encounter with a predator and are
 generally more energetically expensive (chemicals)
 (Robinson 1969, Rotheray 1986). The tropical fulgorid
 bug, Fulgora laternaria L., is camouflaged to match the
 large tree trunks on which it roosts during the daytime.
 If vertebrate predators such as a bird approach, the
 resting bug can then expose large eye spots on its hind
 wings. In addition it has a large hollow extension of
 cuticle that projects anteriorally beyond the head and
 resembles a lizard or snake head. Presumably a preda-
 tor able to surmount each of these defenses in turn will

 then take a bite of the large sham head and end up with
 nothing but cuticle and air (Janzen 1983).

 4) Prey encountering several different types of preda-
 tors may need a separate anti-predator character targeted
 at each predator (Downes 1987).

 This phenomenon is perhaps the most obvious mul-
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