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ABSTRACT 

Loman, J., 1985. Influence of territoriality on the stability and coexistence of competing 
predators -- a simulation study. Ecol. Modelling, 27: 95-108. 

A system of two predators and one prey population was studied by simulations of two 
different models. The two predators were able to coexist if they had a similar ability to 
withstand low prey densities and if prey carrying capacity was not too high. Coexistence was 
also promoted if the predators had a tendency to self-regulation (e.g. territoriality). These 
factors also, in general, increased the stability ( = numerical constancy) of the system. 

INTRODUCTION 

This is a s tudy of the regulatory effect of prey for predator  popula t ions  
and  how this is modif ied by predator  efficiency, capacity of popula t ion  
growth and territoriality. These phenomena  are studied by means  of a model  
representing a simplified system, conta ining two predators  and  one prey 
species. Impor t an t  characteristics of p r eda to r -p r ey  systems are diversity and  
stability. Here, coexistence of  the two predators  corresponds to high diver- 
sity. Stabili ty is a loose term that  has been def ined in several ways: it is here 
used to represent a system in numerical  constancy.  

It was earlier considered that  two predators  could not  coexist if they were 
feeding on the same prey populat ions  (Volterra, 1928; Levin, 1970). Later  it 
was shown that  this is true only of the feeding rates of the predators  increase 
l inearly with prey densi ty (Armstrong and McGehee,  1976). This is probably  
an unrealistic s i tuat ion for most  vertebrate predators.  Rather ,  feeding rate 
increases at a rate that  decreases with increasing prey densi ty (Kei th  et al., 
1977, p. 164). 

0304-3800/85/$03.30 © 1985 Elsevier Science Publishers B.V. 



96 

A model of a two-predator-one-prey system where coexistence between 
predators is possible under some conditions was studied by Hsu et al. (1978). 
Parameters that were studied in their analysis were the efficiency of the 
predators (measured as minimum prey density required for population 
growth) and the predators intrinsic rate of increase. They used a combina- 
tion of analytic and simulation techniques in their study. In the present 
study I extend the scope by treating the importance of predator territoriality. 
For comparative purposes predator efficiency and intrinsic rate of increase 
are also treated. The simulations are further carried out for two different 
models, which differ in detail but are comparable (Loman, 1984). It should 
thus be possible (to some extent) to separate general patterns from peculiari- 
ties of each model. 

Simulation versus analysis 

The properties of a model can be studied by means of a mathematical 
analysis where the conditions for different cases (like coexistence and 
stability) can be completely determined and described. The different parts of 
the parameter hyperspace must, for the description, be delineated by hyper- 
surfaces that are mathematically defined. For complicated systems, such an 
analysis may be difficult or impossible. Simulation of a model for a sample 
of points in the parameter hyperspace in such cases gives an impression of 
the essential features of the system. 

There is another aspect of the choice between analysis and simulation. An 
analysis does not (usually) in itself give information about the time taken for 
the system to reach a steady state (constant equilibrium or limit cycles) nor 
about the magnitude of the cycles. This is probably a very important aspect 
in the real world as systems are influenced by factors other than those built 
into the model. If simulation shows that the time taken for exclusion of a 
species is 100 years, this species is much more likely to persist in the system 
than if the simulation shows that the species is excluded in 1 year. Also, if 
the model system exhibits damped cycles that stabilize only after 100 years 
(d(c) in Fig. 1), it is much more likely to be permanently cyclic in the real 
world than if the cycles are damped in 10 years (d in Fig. 1). One can allow 
for such considerations by chosing simulation periods of different lengths. A 
long period stresses the internal properties of the system while a short one 
gives more weight to external influences. A short period is unfortunately very 
sensitive to the choice of initial values. In the present study I have made a 
subjective compromise, maybe biased towards a long simulation time (ap- 
proximately 30 years). 

It is not my opinion that simulation is superior to analysis, only that the 
two methods have different qualities. 
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Fig. 1. Different kinds of dynamics exhibited by the populations in the simulations. The 
abbreviations are used in the text. 

METHODS 

Model L This model is given by the equations (see Appendix): 
d V / d t  = Vrm~(o)(1 - V / K )  - FpP - FqQ 

d P / d t  = P ( b -  d )  

F b P 

bma x = rma x + d 

Fm~xV 
F = -  

F r + V  

(a) 

(2) 

(3) 

(4) 

(5) 
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Equation (1) is a standard equation for resource limited prey species which 
are also subject to predation. Equation (3) is a modification of the equation: 

F b b = - -  m a x  (6) 
Fmax 

that was used by Hsu et al. (1978). This modificat ion was made  to make it 
possible to simulate territoriality: eq. (3) is identical to eq. (6) if P = 0, thus 
there is no selfinhibition of populat ion growth at zero density. Equations (3) 
and (4) can be rewrittenas: 

dP/d t=  P (bma - rmax)-d (7) 

if P -- Ki. According to this expression, d P / d t  is always less than or equal 
to 0, with equality for predators feeding at their max imum rate ( F - -  Fro, ~). 
The populat ion can thus have an equilibrium for P - - K i  if prey is not 
limiting (cf. eq. (5)), otherwise equilibrium densities are less than Ki. 
Equation (5) was originally suggested by Holling (1965). 

Model II. This model  is given by the equations: 

d V / d t  = Vrm~,(v)(1 - V / K )  - FpP - FqQ (8) 

d e / d t =  P max(r ,  - d )  (9) 

F m a  x P + Ki] (10) 
r = rmax(p) 2 F R'i ] 

FmaxV (11) r=rr+------ 
Equation (8) is identical to eq. (1). Equations (10) and (11) are modified 
from an equation by Tanner  (1975): 

( 1 d P / d t  = Prm~(p ) 2 F -  F~n 

The modification has been done by setting Fmi, at 0, by introducing a 
min imum growth rate ( -  d)  and by adding a factor that makes it possible to 
model  territoriality ((P + Ki)/Ki): r can never be positive if P = Ki and the 
populat ion cannot  increase above this density (K i). Equation (10) is identi- 
cal to the corresponding part  of eq. (12) if P = 0 and at low densities 
territoriality does thus not influence the populat ion growth. The introduc- 
tion of a min imum growth rate, corresponding to the rate of decrease if no 
food is available facilitates simulations and is probably realistic. Feeding rate 
(eq. (11)) is modelled in the same way as in model  I. 
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Predator efficiency 

)~ is defined as the prey density at which a non-territorial predator 
population is in equilibrium and is called 'predator efficiency'. A low )~ 
value represents high efficiency. It can be shown that )~ = Fr in model I and 
that )~ = Frd / rma  x in model II. I wish to give )~ the nature of a parameter 
that is varied in the simulations and therefore the following definitions are 
added to models I and II, respectively: 

F r = X  (13) 

and 

Fr = Xrmax/d (14) 

Parameter  space 

Preliminaries. In this study I am mainly concerned with trends in stability 
and coexistence following changes in degree of territoriality. The exact 
choice of parameter values is thus not very important for the conclusions 
drawn. However, as the models are composed of equations that are thought 
to model biological processes one would expect them to produce biologically 
meaningful results for at least some biologically reasonable parameter val- 
ues. If, for example, stable or moderately fluctuating communities were 
predicted by a model for quite unrealistic parameter values only, one would 
doubt the usefulness of this model. Here, it is shown that the parameter 
values used in the simulations are from biologically meaningful ranges. One 
test of the models as such is thus whether the patterns predicted are, at least 
sometimes, biologically realistic. 

rma x and d. Tanner (1975) gives /'max as 0.0013-0.0027 (recomputed with 
days as time unit) for four vertebrate predators (mink, mountain lion, wolf 
and lynx). For Microtus  agrestis rm~ x has been calculated as 0.012 (Leslie and 
Ranson, 1940) and for another prey species, the european rabbit as 0.0052 
(G. Jansson, personal communication). This suggests that the chosen values 
(0.001, 0.002, and 0.004 for predators and 0.008 for prey) are from a realistic 
range, d is the population rate of decrease when no food is available. No 
field estimate of this parameter is available. The chosen value (0.035) 
corresponds to a population which decreases by 50% every 10 days; this 
should at least be in the right order of magnitude. 

Fma ~ and Ki. Fma x is essentially a scaling factor. A value of I (e.g. 1 kg/day)  
was used as an arbitrary choice. In a field situation when food was very 
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abundant, feral cats consumed approximately 500 g of prey per day. Their 
normal intake was 250 g /day  (Liberg, 1981). If Fma x c a n  be set to about 
twice the normal intake for other predators, the density of territorial preda- 
tors in a study area in south Sweden can be computed in terms of 'standard 
predator units' (with Fma x = 1.0 kg prey per day). Combining the density of 
the territorial predators buzzard, fox and cat, this density was 1.9 units per 
km 2 (from information in Erlinge et al., 1983). The three considered preda- 
tors dominate the guild of rodent predators. Supposing that the observed 
density can be multiplied a few times under optimal food conditions before 
territoriality stops further population increase, 10.0 units is a reasonable 
choice for Ki. On the other hand, a territorial behaviour that only stops the 
predator population from growing as it approaches a density of 80 is not 
likely to be of practical importance, food should set a much lower limit to 
population growth. 

K, ~p and ~q. Determining K and ~ empirically is difficult. However, the 
outcome of the analysis only depends on their relative value (h/K)  (first 
paragraph in the results section on stability). The choice made for these 
parameters is such that all interesting parts of the parameter space is 
covered. For more extreme values than those studied, the system is obviously 
unstable (Figs. 2 and 3) or the predators become extinct by definition (third 
paragraph of the discussion section on coexistence). 

Summary of parameter values 

The two models were simulated with the following fixed parameter values: 
Fmax(p) = Fmax(q) = 1.0, rmax(v) = 0.0080,  dp = dq = 0.035, ~kq = 1000. The time 
unit was days and simulation time 10 000 d (about 27 ys). Simulations were 
started with a prey density of 500 for both models. Initial predator densities 
were 2 for model I and 10 for model II. The following parameters were 
varied: Kip, Kiq, rmax(p) , rmax(q)  , K, and h e- 

Kip and Kiq respectively were set at 80 (virtually no territoriality) 10 
(territoriality), four combinations in all. rmax~p) and rmax(q) were both set at 

Fig. 2. Results from simulations of model I. The boxes represent the twelve possible 
combinations of degree of territoriality and predator intrinsic rate of increase. The break-even 
point for the Q predator's population growth is always set to 1000. The values of Xp and prey 
carrying capacity (K)  are varied within the boxes. Cross-hatched area represent part of the 
parameter space where the populations are stable (constant or asymptotically approaching a 
constant value) by the end of the simulation period (s, s +, d(s) or d). Of this, the light 
cross-hatched part represents parts where the populations initially oscillate (d(s) and d). The 
area within (above) the line represents parts where the two predators are able to coexist. 
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0.0020 or one at 0.0010 and the other at 0.0040, three combinations in all. 
Varying Ki and Rma x thus yielded 12 combinations. For each of these K 
was set at 1050, 2000, 4000, or 6000 and )~p to 1000, 950, 900, 600, or 200. A 
total of 12 times 16 simulations were thus made for each model. In both 
models, P was ()~p ~ ~q = 1000) the predator that was able to maintain an 
equilibrium population on the smaller prey density. 

Interpretations 

The dynamics of the predator populations were noted for each simulation. 
Populations that were stable by the end of the simulations time (Fig. 1: s, 
s + ,  d(s), and d)  were classified as stable and those that still cycled (Fig. 1: 
d(c) and c) as cyclic. Coexistence was subjectively defined as the situation 
where no predator population decreased below 0.05 individuals per unit 
area. I analyzed another, more liberal, criterion, viz. accepting those situa- 
tions where a predator periodically dropped below 0.05 but not below 0.01 
as cases of coexistence. The conclusions drawn from that analysis were 
however not different, so for simplicity only the first analysis is presented 
here. 

RESULTS 

Coex&tence 

Coexistence was most common in both models if both predators had a 
similar efficiency (the upper part of the boxes in Figs. 1 and 2). Also, it was 
most common if prey carrying capacity was not low or very high (as to the 
right and left in the boxes). The effect of low carrying capacity was not a 
matter  of scale as one could have expected when coexistence, as here, is 
defined in relation to a fixed level. Actually, the density of the more scarce 
predator increased manyfold when prey carrying capacity increased from 
1050 to 2000 (Table 1). 

Coexistence was possible for a wider range of )~p and K values if both 
predators were territorial than if none were (31 cases vs. 14 and 45 vs. 29 for 
model I and II, respectively). If only the less efficient predator was territorial 
coexistence did not increase (14 and 26 cases of coexistence, respectively) 
and if the most efficient predator was territorial, coexistence was somewhat 
more common than if neither was (19 and 41 cases, respectively). 

Coexistence was in both models more common if the predators had a 
similar intrinsic rate of increase (30 and 52 cases of coexistence for models I 
and II, respectively) or if the more efficient predator also had the higher rate 
(28 and 51 cases, respectively) than if the least efficient predator had the 
higher intrinsic rate of increase (20 and 38 cases, respectively). 
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TABLE 1 

Equilibrium densities of the two-predator populations at two levels of prey carrying capacity 

K= 1050 K= 2000 

P Q P Q 

rp = 0.0010 Model I 0.51 0.09 1.17 6.04 
rq = 0.0040 Model II 0.52 0.03 1.18 3.16 

rp = 0.0020 Model I 0.30 0.43 1.07 6.12 
rq = 0.0020 Model II 0.32 0.21 1.10 3.14 

rp = 0.0040 Model I 0.07 0.88 1.06 6.11 
rq = 0.0010 Model II 0.10 0.50 1.11 3.06 

Kip = 10, Kiq = 80, Xp = 950, ~q = 1000 in all simulations. 

Stability 

Stability decreased (i.e. limit cycles were less common) if prey carrying 
capacity increased or the efficiency of the most efficient predator increased 
(Figs. 2 and 3). In fact, variation in both predators'  efficiency was studied; 
this was a matter of scaling as simulating the models with parameter values 
K =  1050, ~ p =  300 and ~ q =  500 gave the same result as with values 
K = 2100, ~p = 600 and ~kq = 1000. 

The relative intrinsic rate of increase did not greatly influence stability. If 
P had the lower intrinsic rate of increase 23 and 39 simulations were stable 
for models I and II, respectively; if the predators had a similar rate 24 and 
40, respectively; and if Q had the lower rate 23 and 46, respectively, were 
stable. The influence of the overall level of predator intrinsic rate of increase 
was not studied, however. 

Model I was more stable if the more efficient predator was territorial, 
regardless of the properties of the other one (21 stable cases for both 
combinations), than if it was not territorial (16 stable cases). 

DISCUSSION 

Interpretation of  the results 

Stability. The cyclicity of the system at high prey carrying capacity and 
high predator efficiency is an example of " the  paradox of enrichment" 
(Rosenzweig, 1972). 

Coexistence. Elimination of the inferior competitor at high prey carrying 
capacity (to the right in the boxes of Figs. 2 and 3) is related to the high 
degree of cyclicity (large amplitude cycles) that the system has for these 
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parameter values. The predator that reaches the lowest densities has no time 
to recover during the time of high prey density: one predator increases and 
causes the other prey to reach a further 'low' too soon. 

Elimination of the inferior competitor when the other is too efficient (low 
~,p) (in the low part of the boxes, Figs. 2 and 3) takes place because the 
efficient predator decreases the prey density to a low level, below the density 
required for population increase of the outcompeted predator. This is the 
classical form of competative exclusion (Volterra, 1928; MacArthur, 1972). 

One of the predators (Q) is easily eliminated at low prey carrying capacity 
(to the left in the boxes). This is because it is, by definition, close to being 
eliminated also without competition (?% = 1000). K--1000 was not even 
included in the analyzed parameter space as one predator by definition had a 
non-positive equilibrium density for this prey carrying capacity. 

It should be noted that systems that were stable only after initial oscilla- 
tions had damped (Fig. 1: d(s) and d) are those that are most likely to hold 
coexisting predators (Figs. 2 and 3). This corresponds to the finding by Hsu 
et al. (1978) that all systems with coexisting predators were cyclic. 

Fr and ?~--two measures of predator efficiency 

Hsu et al. (1978) found that coexistence is possible only if one of the 
predators is an efficient hunter (low Fr) and the other has a high intrinsic 
rate of increase (high rm~,). A corresponding pattern should in this study, 
have appeared as a higher tendency for coexistence if rm,x(p)= 0.001 and 
rm~,(q) = 0.004 than for any other combination of rma x values but this was 
not observed. This is partly due to differences between the two models as 
Hsu et al. (1978) did not analyse model II. This model has the property that 
a high intrinsic rate of increase also leads to a high rate of decrease at low 
prey densities. This correlation is probably not too unrealistic and counter- 
acts the advantage from a high intrinsic rate of increase for this predator. 

As to model I, the superficial discrepancy is due to differences in the 
scaling of the studied parameter space. I chose for both models X as an 
independent measure of efficiency. This is a measure of the predators' 
'survival efficiency' at low prey densities. Hsu et al. (1978) used Fr as a 
measure of efficiency. This is a measure of the predators feeding efficiency at 
low prey densities. The analysis of model II is facilitated by the fact that 
these measures are interchangeable (Eq. 13). In model I the relation is 
affected by the values of the parameters rm~ and d (Eq. 14). X was chosen as 
an independent measure variable which makes it easier to delineate the 
studied parameter space so that meaningless simulations are avoided (X > K). 
However, re-analysing model I with emphasis on variation in Fr reveals the 
same kind of relation as found by Hsu et al. (Table 2). When rmax(q) > rmax(p) , 
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P is in this study always much more efficient (sensu Hsu et al., 1978) than Q 
(Frq > Frp) and P eliminates Q. When rmax(p~ > rmax(q) , Q is more efficient 
(sensu Hsu et al., 1978). If Q is much  more efficient (Frq = 28, Frp = 114) Q 
eliminates P but  if the difference is less (Frq = 28, Frp = 109 or 103) the two 
predators coexist. The finding is thus corroborated but  the generality of the 
result somewhat decreased as it only applies for one model. 

Empirical testing 

The main conclusion from this study is that communit ies  of territorial 
predators are more likely to be stable and likely to contain more species than 
communit ies  of non-territorial predators. 

Empirical tests of this proposal  require a numerical quantification of 
territoriality. Such a measure could possibly be based on populat ion growth 
at different density levels, while controlling for prey density. Given such a 
measure, different communit ies  could be compared with respect to diversity 
and stability. 

T A B L E  2 

Equi l ib r ium values for the  two p reda to r s  

Equi l ib r ium densi t ies  

e O 

rmax(p) = 0.001 Frq = 114 
/'max(q) = 0.004 (~kq = 1000) 

Fmax(p) = 0.004 Frq = 28 
Fmax(q ) = 0.001 (X q = 1000) 

Frp = 28 0.52 0.02 
(~p = lO00) 

Frp = 27 0.72 0.01 

(Xp = 950) 

Frp = 26 0.96 0.00 
(hp  = 900) 

Frp = 1 7  2.09 0.00 

(Xp = 600) 

Frp = 114 0.02 0.52 
(Xp = 1000) 

Frp = 109 0.13 0.48 
(Xp = 950) 

Frp = 103 0.48 0.40 
(Xp = 900) 

Frp = 69 2.25 0.00 
(Xp = 600) 

S imula t ions  are a r ranged  accord ing  to Frp values. Pa rame te r  values used  in these  examples  

are  K = 1050, Kip = Kiq = 80 and  the  rma x values given in the  table.  
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APPENDIX 

b 
d 
F 

Fmax 
Fr 

K 
Ki 

P , Q  
r 

rmax 
V 
X 

Predators'  birth rate 
Predators'  death rate when no food is available 
Feeding rate of the predators (prey units per predator individual and 
time unit) 
Maximum feeding rate of a predator 
A parameter in the functional response equation (they prey density 
which gives a feeding rate that is 50% of Fmax) 
Carrying capacity for the prey population 
An index of predator territoriality (the density that the predator  
population approaches when prey density is unlimited) 
Densities of the predator populations 
Per capita rate of increase, e.g. ( d P / d t ) / P  
Intrinsic rate of increase 
Density of the prey population 
A measure of predator efficiency (the prey density that permits a 
predator population to stay in equilibrium) 

P, Q and V are state variables (these letters are also used when referring to 
the populations); d, Fma . K, Ki, X and /'max are independent variables 
(parameters); b, F, Fr, k and r are dependent variables. 
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